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Neurodegenerative disorders are debilitating diseases of the brain, characterized by behavioral, motor
and cognitive impairments. Ample evidence underpins mitochondrial dysfunction as a central causal
factor in the pathogenesis of neurodegenerative disorders including Parkinson's disease, Huntington's
disease, Alzheimer's disease, Amyotrophic lateral sclerosis, Friedreich's ataxia and Charcot-Marie-Tooth
disease. In this review, we discuss the role of mitochondrial dysfunction such as bioenergetics defects,
mitochondrial DNA mutations, gene mutations, altered mitochondrial dynamics (mitochondrial fusion/
fission, morphology, size, transportjtrafficking, and movement), impaired transcription and the associa-
tion of mutated proteins with mitochondria in these diseases. We highlight the therapeutic role of
mitochondrial bioenergetic agents in toxin and in cellular and genetic animal models of neurodegen-
erative disorders. We also discuss clinical trials of bioenergetics agents in neurodegenerative disorders.
Lastly, we shed light on PGC-1a, TORC-1, AMP kinase, Nrf2-ARE, and Sirtuins as novel therapeutic targets
for neurodegenerative disorders.

@ 2013 Elsevier Inc. All rights reserved.
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Neurodegenerative disorders are set of late-onset, progressive,
age-dependent brain disorders, characterized clinically by the
impairment of cognitive functions, motor co-ordination, dyskinetic
movements, and irreversible changes in behavior and personality.
Pathological hallmarks of these disorders including Parkinson's
disease (PD), Alzheimer’s disease (AD), Huntington’s Disease (HD)
and Amyotrophic Lateral Sclerosis (ALS) are accumulations of
mutant proteins such as w-synuclein, amyloid-p (Ap), mutant
huntingtin (Htt), TAR DNA binding protein (TDP-43) and super-
oxide dismutase (SOD) respectively in the affected brain regions.
Oxidative stress, inflammation, mitochondrial dysfunction, excito-
toxicity, and impaired transcription have been identified as causal
factors for neurodegenerative disorders. Amongst these, mito-
chondrial dysfunction takes center stage in the pathophysiology
of chronic neurodegenerative disorders. Mitochondria, a tiny and
dynamic organelles often referred as “powerhouse of the cell” and
“ATP reservoir”, are required for the tremendous energy demands
of the brain cells including neurons. In the mitochondria, ATP is
produced by tightly regulated processes including tricarboxylic
acid cycle (TCA) or Krebs cycle and oxidative phosphorylation
{OXPHOS/respiratory chain complex I-1V). Any defect of proper
functioning of brain mitochondria may lead to severe energy
deficiency as well as increased generation of reactive oxygen
species (ROS) in neuron and ultimately neuronal demise. In this
review, we will discuss the role of mitochondrial dysfunction,
mitochondrial bioenergetics, mitophagy, mitochondrial fusion/fis-
sion and transcriptional dysregulation in the pathogenesis of
neurodegenerative diseases of the brain Figs. 1-4.

Mitochondrial dysfunction in Parkinson's disease (PD)

PD is a chronic, progressive, age associated and often debilitat-
ing neurodegenerative disorder characterized by selective degen-
eration of melanin containing dopamine producing, neurons and
the presence of intraneuronal protein inclusions of aggregated -
synuclein termed Lewy Bodies in the nigrostriatal neurons as well

as other affected nuclei. Several studies implicate mitochondrial
dysfunction in dopaminergic neurons in PD pathogenesis. How-
ever, mitochondrial dysfunction in PD is not restricted only to the
dopaminergic neurons but is also observed in non-dopaminergic
neurons Table 1.

Bioenergetic defects in PD

Several lines of evidence imply a role for mitochondrial dys-
function in the pathophysiology of PD[1-3]. Parkinson like symp-
toms in humans occurred following accidental infusion of the
meperidine analogue 1-methyl-4-phenyl-1,2,3,6-tetrahydrodropyr-
idine (MPTP), a selective inhibitor of mitochondrial complex-1 of
the electron transport chain, which suggested a specific role of
mitochondrial dysfunction in the pathogenesis of PD [4,5]. Other
more potent complex-1 inhibitors such as pyridaben, rotenone,
fenazaquin, tebunfenpyrad, trichloroethylene and fenpyroximate
cause degeneration of dopaminergic neurons and parkinsonian
symptoms in rodents, fly and cell models, further suggesting
involvement of mitochondrial dysfunction in PD pathogenesis|6-
13]. Short term systemic rotenone infusion causes decreased
respiratory activity, increased mitochondrial permeability transi-
tion and concomitant cell death in substantia nigra neurons in the
rat brain [14]. Ingestion of another mitochondrial complex-1
inhibitor annonacin, found in the fruit and leaves of the plant
Annona muricata, caused atypical parkinsonism in rodents and
humans [15,16]. Importantly these mitochondrial toxins not only
inhibit complex-1 activity, but also reduce mitochondrial move-
ment [17]. Paraquat causes electron transport chain complex-III
mediated ROS production in rat brain mitochondria [18]. Rotenone
and pyridaben also decrease mitochondrial nitric oxide synthase
(NOS) functional activity with NAD-dependent substrates, suggest-
ing involvement of mitochondrial complex-1 [19].

More direct evidence for involvement of mitochondrial dysfunction
in PD pathogenesis comes from studies of complex-l activity in PD
patients. Activity of complex-1 and immunohistochemicalcomplex-I
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Fig. 1. Mitochondrial dysfunction and therapeutics in PD: Oxidative stress, apoptosis, mitochondrial dysfunction, and inflammation are the common factors for PD
pathogenesis. Pathogenic mutations in a-synuclein, DJ-1, parkin, PINK1, Omi/HtrA2 and LRRK2 are the causal factors for mitochondrial dysfunction, oxidative damage and PD
pathogenesis. DJ-1 plays a protective role by inhibiting ROS generation, while Parkin enhances mitochondrial proliferation by increasing Tfam expression. Mutations in DJ-1
and Parkin lead to increased ROS levels and decreased mitochondrial proliferation respectively. Mitochondrial DNA mutations also cause mitochondrial dysfunction.
Enhanced ROS levels cause decreased mitochondrial proliferation, decreased activity of the Ubiquitin protecsome system (UPS), increased mitochondrial transition pore
opening, and enhanced Bax mediated CytC release from the mitochondria, which ultimately lead to neurodegeneration. Mitochondrial toxins MPTP, rotenone and paraquat
cause mitochondrial dysfunction through inhibition of mitochondrial complex-l, which leads to decreased ATP levels and neurodegeneration. PINK and Parkin act in co-
ordinated manner for regulation of mitochondrial dynamics. PINK recruits Parkin to defective mitochondria for their clearance by mitophagy. Mutations in PINK and Parkin
cause decreased binding of PINK to parkin, leading to Impaired mitochondrial fusion/fission, movement, abnormal morphology and accumulation of damaged mitochondria.
Parkin interacting substrate, PARIS {ZNF746) represses the expression of PGC-1a and NRF-1 by binding to the PGC-1a promoter, leading to selective loss of dopaminergic
neurons. PPAR agonists such as Thiazolidinedione, Pioglitazone and Rosiglitazone activate PPAR and PGC-1q, which regulate the expression of several target genes involved
in mitochondrial biogenesis, ROS defence system, cell survival and neuroprotection. Activation of PGC-1a by SIRT1 activator resveratrol and AMP Kinase activator AICAR and
metformin, blocks MPTP mediated cell death and inhibits mitochondrial dysfunction. Over expression of Miro/Milton enhances clearance of defective mitochondria and
reduces defects in mitochondrial dynamics. MitoQ, mitochondrial targeted antioxidant peptide S5-31, Triterpenoids, Ginkgo biloba, Nicotinamide and Lipoic acid reduce
mitochondrial dysfunction by inhibiting ROS levels.

subunits are decreased in the brains of idiopathic PD patients,
suggesting disease specific and drug independent impairment of
complex-I activity [20-26). Morphometric and immunohistochemical
analysis suggested defects of complex-I in the substantia nigra of PD
patients[27]. There is also evidence that mitochondrial complex-I
subunits are functionally impaired, misassembled and oxidatively
damaged in postmortem PD brain [12]. Impairment of mitochondrial
complex activity is not only restricted to the brain but also reported to
be decreased in peripheral tissues such as skeletal muscle, lympho-
cytes and platelets of PD patients[28-35]. Mitochondrial respiratory
chain failure is also observed in skeletal muscle of PD patients[36].
Recently, the levels and functions of the mitochondrial neuronal
survival factor MEF2ZD and ND6, which regulate the activity of
complex-I were found to be decreased in a mouse model of PD and
postmortem brain tissue of PD patients[37]. Thus, mitochondrial
complex-I activity and its regulation by transcription factors are both
altered in PD patients[37]. Reduced staining of the rate limiting
enzyme of TCA cycle mitochondrial alpha-ketoglutarate delydrogen-
ase (KGDH) is reported in the brain of PD patients[38,39]. These

studies suggest involvement of bioenergetic defects and reduced
mitochondrial complex activity in PD pathogenesis.

Mitochondrial DNA defects in PD

Reduced complex-I activity and an increased susceptibility to
MPP+ were also observed in cytoplasmic hybrid ("cybrids") con-
taining mitochondrial DNA (mtDNA) from PD patients, suggesting
mtDNA encoded defects in PD[40-42], although in one study no
significant reduction in complex-I activity was found[43]. Further,
these studies also suggested that defects in complex-I activity are
transferable from PD patients to mitochondria deficient cell lines
to form “cybrids”, and recipient cells also developed reduced
mitochondrial membrane potential (MMP), mitochondrial respira-
tion, variable mitochondrial biogenesis and abnormal Ca?* hand-
ling[40-42,44,45]. PD cybrids show similar molecular genetic and
mitochondrial respiratory properties to observations made on
mitochondria in PD brain[46]. PD cybrids also have reduced SIRT1
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Fig. 2. Mitochondrial dysfunction and therapeutics in HD: Mutant huntingtin {mHtt), the pathogenic protein in HD, causes mitochondrial dysfunction by several
mechanisms. It results in inhibition of the activity of succinate dehydrogenase {SDH), a component of complex-1l of mitochondria, which leads to increased ROS generation
and decreased ATP levels. Mutant huntingtin impairs mitochondrial Ca®* handling ability, enhances mitochondrial permeability transition pore opening, and increases CytC
release. It also binds to the several transcription factors including TAF-1I, CBF, and SP-1 in the nucleus. PGC- 1« a transcriptional co-activator, involved in regulation of cellular
respiration and mitochondrial biogenesis is implicated in HD pathogenesis. Mutant Het protein directly binds to PGC-1a and reduces the expression of its downstream target
genes involved in mitochondrial biogenesis and normal mitochondrial function. Mutant Het binds to the CREB/TAF complex of the PGC-1a promoter, or directly represses
PGC-1a and TORC1 transcription and function, leading to decreased mitochondrial biogenesis, reduced mitochondrial DNA content and enhanced mitochondrial dysfunction.
Mutant Htt abnormally binds to mitofusin (MIFN} and mitechondrial fission protein DRP1. This leads to increased DRP-1 GTPase enzymatic activity, impaired mitochondrial
fusion/fission, movement, abnormal morphology and enhanced accumulation of defective mitochondria and ultimately neuronal demise. Mutant huntingtin also increases
DRP-1, Fis1 and CypD expression and decreases mfn1/2 & OPAl expression, resulting in Impaired mitochondrial dynamics and cargo recognition. The mitochondrial toxin
3-NP causes mitochondrial dysfunction through inhibition of mitochondrial complex-l activity. Over expression of TORC1 and PGC-1« inhibits 3-NP mediated toxicity and
reduce mitochondrial dysfunction. The PPARy agonists bezafibrate, thiazolidinedione, pioglitazone and rosiglitazone increase PGC-1n expression and mitochondrial
biogenesis and reduce mitochondrial dysfunction. Nerve growth factor {NGF), SIRT1&3 activators resveratrol and viniferin, AMPK activators AICAR, metformin and viniferin
and nicotinamide activate PGC-1a expression, which leads to decreased ROS levels and reduced mitochondrial dysfunction and enhanced neuronal survival. MitoQ, peptide
55-31, Ginkgo biloba, Nicotinamide, Lipoic acid and X]B-5-131 provide neuroprotection by reducing ROS levels and inhibiting mitochondrial dysfunction. Increased PGC-1x
expression leads to TFEB activation and enhanced mutant Het degradation. Over expression of Miro/Milton enhances clearance of defective mitochondria and reduces defects
in mitochondrial dynamics. Small molecules dynasore and mdivi reduce DRP-1 GIPase activity and prevent dysfunction in mitochondrial dynamics.

phosphorylation, reduced peroxisome proliferator-activated rece-
ptor-gamma coactivator-lalpha (PGC-1a) levels, reduced cellular
respiration and increased NF-KB activation [47]. Another study
suggested that PD cybrids have less ATP, altered mitochondrial
maorphology, depolarized mitochondria, less mitochondrial cyto-
chrome c and higher susceptibility to the mitochondrial complex-I
inhibitor MPP+[4849]. Interestingly transfer of mtDNA from
commercially available human genomic DNA to PD cybrids
restores mitochondrial dysfunction[50]. In this study, recombinant
human mitochondrial transcription factor A (Tfam) having a SOD2
mitochondrial localization signal was used to transport mtDNA
bound to Tfam in the mitochondria of PD cybrids, having impaired
respiration and reduced mtDNA genes[50]. Following mtDNA
transfer increased mtDNA gene copy numbers, Tfam and ETC
proteins, cell respiration, and mitochondrial movement velocities
were observed in PD cybrids [50]. Cybrid models of sporadic PD
are being widely used to understand the role of mitochondrial
dysfunction in PD pathogenesis [44,51]. Altogether studies in PD

cybrids suggest direct involvement of mitochondria in the prog-
ression of PD,

Mitochondrial DNA mutations and polymorphisms in PD:

Besides the mitochondrial complex-1 defects, a number of
studies suggested that mutations in mtDNA [52-54] and poly-
morphism([55] play an important role in PD pathogenesis. Quite a
few clonal and somatic mtDNA mutations have been observed in
the substantia nigra of PD patients, implicating a role of mtDNA
mutations in mitochondrial dysfunction and dopaminergic cell
death [56-60]. Recently we found that mtDNA mutation levels
were significantly elevated in the substantia nigra of early stage PD
patients [61]. Genetic variations in NADH dehydrogenase ubiqui-
none flavoprotein 2, encoding a subunit of mitochondrial com-
plex-I, were possibly associated with idiopathic PD [62]. Similarly,
heteroplasmic mutations in a narrow region of NADH: ubiquinone
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and Fis1, and decreased fusion, mfn1/2 & OPA1 expression. Impaired mitochondrial dynamics ultimately leads to decreased clearance of defective mitochondria and
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reduce the expression of PGC- 1a, which leads to decreased mitochondrial biogenes

is, mitochondrial DNA content and enhanced neurodegeneration. Activation of PGC-1a by

PPARy agonist (bezafibrate, thiazolidinedione, pioglitazone and rosiglitazone), resveratrol, AICAR, metformin, hopeahainel A, diammonium glycyrrhizinate {DG) reduces Ap

induced mitochondrial dysfunction and neurodegeneration. Triterpenoids, Creati

ne, CoQ10, Nicotinamide, DG, Bacopa monniera, hopeahainol A, MitoQ, peptide 55-31,

Ginkgo biloba, nicotinamide and lipoic acid reduce mitochondrial dysfunction through inhibition of ROS levels. PGC-1ux causes increased nonamyloidogenic processing of APP
and Fox03 mediated reduction in Af levels, leading to increased neuronal survival. Over expression of Miro/Milton enhances clearance of defective mitochondria and reduces

defects in mitochondrial dynamics.

oxidoreductase ND5 (a mitochondrial gene encoding a complex-1
subunit) are detected in the brains of PD patients [63,64].
Increased mtDNA deletions/rearrangements were found to be
associated with neurodegeneration in PD [59,65]. The presence
of increased clonally expanded mtDNA deletions are associated
with respiratory chain deficiency in the substantia nigra of aged
PD patients [66,67]. Importantly, the frequency of mtDNA dele-
tions was significantly higher in the substantia nigra, than in the
putamen or frontal cortex of PD patients, suggesting dopaminergic
neurons are more vulnerable to mtDNA deletions [68]. Mutations
in mtDNA polymerase gamma (POLG) were identified as an
important cause of inherited parkinsonism in five ethnically
distinct finish families [69,70]. However, a study by Tiangyou
et al., 2006 did not find a role of dominant POLG mutations in a
large number of PD patients[71]. We observed G11778A mtDNA

point mutation in a subunit of mitochondrial complex-I in a family
with parkinsonism and multisystem degeneration [72]. We also
identified high levels of somatic mtDNA point mutations in elderly
PD patients [58]. Recently mutations in the mitochondrial chaper-
one mortalin, which has a regulatory role in mitochondrial
biogenesis and mitochondrial homeostasis, were reported in PD
patients [73,74]. Another compelling piece of evidence for mito-
chondrial dysfunction in PD has come from conditional knockout
“MitoPark” mice, which have a disrupted Tfam gene in DA neurons.
These mice show reduced mtDNA expression, reduced respiratory
chain function in DA neurons, and a progressive PD phenotype,
consistent with involvement of respiratory chain dysfunction in PD
pathogenesis|75]. Further, there is evidence of reduced mitochon-
drial mass and size in mouse substantia nigra DA neurons as
compared to non-DA neurons, suggesting selective vulnerability of
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Fig. 4. Mitochondrial dysfunction and therapeutics in ALS: Mutant S0OD1 {mtSOD1} localizes in the outer membrane, and in the matrix of mitochondria, and impairs
mitochondrial morphology and bioenergetic functions. After association with mitochondria, meSOD1 causes mitochondrial dysfunction by several mechanisms. It may
damage mitochondrial membranes, leading to loss of mitochondrial membrane potential and swelling of the important organelle including mitochondria. It directly inhibits
the activity of mitochondrial respiratory complex-1I, which leads to disrupted redox homeostasis and decreased ATP production. Mutant SOD1 inhibits Ca®* handling of
mitochondria by impairing Ca?* homeostasis, leading to activation of apoptosis of motor neurons, Impaired Ca?* homeostasis, excitotoxicity, impaired respiratory complexes
activity and increased ROS generation by mtSOD1 are not isolated but interrelated mechanisms, leading to mitochondrial dysfunction and motor neuron degeneration in ALS.
Mutant SOD1 also sequesters the anti-apoptotic protein Bcl-2, and enhances cytochrome ¢ release, and release of pro-apoptotic proteins from mitochondria. It also inhibits
protein import inside the mitochondria. Mutant SOD1 also disrupts slow axonal transport of proteins and organelles such as mitochondria. Mutant SOD1 impairs
mitochondrial movement in anterograde and retrograde directions by an interaction with the anterograde motor protein kinesin-2 complex via kinesin-associated protein,
and the retrograde motor protein complex dynein-dynactin respectively. Mutant SOD1 also binds to microtubules and neurofilaments. Mutant SOD1 reduces the levels of the
mitochondrial cargo adaptor proteins Miro/Milton. Mitochondria with abnormal morphology such as fragmented network, swelling, increased cristae, and degenerating
vacuoles have been observed in the soma, axons and dendrites of motor neurons in ALS, There is also abnormal accumulation of diseased mitochondria in the neurites of
motor neurons. TDP-43, another pathogenic protein in ALS, causes increased mitophagy in the neurons. Expression of PGC-1a and mitochondrial biogenesis are significantly
decreased in ALS. MitoQ), mitochondrial targeted antioxidant peptide 55-31 and Triterpenoids reduce ROS levels and mitochondrial dysfunction.

DA neurons may be due to the mitochondrial dysfunction
in PD[786].

Gene mutations implicate mitochondrial dysfunction in PD:

In addition to mtDNA mutations, pathogenic mutations in
several genes including o-synuclein, parkin, UCHL-1, DJ-1, PINK-1,
LRRK-2, NURR-1, tau, and HtrA2 also directly or indirectly impli-
cate a role of mitochondrial dysfunction in familial PD pathogen-
esis [2,3,77-80]. Missense mutations, duplication and triplications
in u-synuclein, a component of Lewy Bodies are associated with a
rare form of autosomal dominant familial PD [77,78,81-83].
Several studies have suggested that a-synuclein is localized to

mitochondria[77,84,85]. Mitochondrial import and accumulation
of u-synuclein causes increased ROS generation and impairment of
complex-1 in the substantia nigra and striatum of PD brain[86]. a-
synuclein localization on mitochondrial membranes causes
increased release of cytochrome ¢, increase of mitochondrial
calcium and nitric oxide, and oxidative modification of mitachon-
drial components in a-synuclein overexpressing cells [87]. Direct
interaction of w-synuclein with mitochondrial membranes resulted
in enhanced mitochondrial fragmentation [88]. Quantitative pro-
teome analysis in a presymptomatic A53T a-synuclein PD Droso-
phila model suggested dysregulation of proteins involved in
normal mitochondrial function [89]. Human o-synuclein gene
over expressing transgenic mice and neuronal cells exhibit
impaired mitochondrial function, increased mtDNA damage, and



Table 1

Mitochondrial Thereapeutic approaches in neurodegenerative disorders.

Bioenergetic agent Disease Treatment Effects

Creatine PD Rat in vitro ventral mesencephalic neuron Significantly increased TH-IR cell density; cre
cultures, creatine (5 mM)} neuroprotection against MPP*-induced TH-IR

Creatine PD Primary cultures of E14 rat ventral Creatine exerted significant neuroprotection f
mesencephalon dopaminergic neurons neurons against MPP* and G-OHDA
{creatine 5 mM for 7 days)

Creatine PD Cyclooxygenase 2 inhibitor rofecoxib and Significant protection against striatal dopamir
creatine coadministered in MPTP mouse model of substantia nigra tyrosine hydroxylase immi
of PD

Creatine PD Oral supplementation of creatine or Significant protection against MPTP-induced ¢
cyclocreatine in MPTP mouse model of PD and

TH-immunostained neurons in the substantia

Creatine PD 6-OHDA PD rats received a 2% creatine- Artenuation of L-DOPA-induced dyskinesia
supplemented diet for 1 month before L-DOPA
therapy

Creatine + CoQ10 PD Treatment with combination of CoQ10 and Combination of creatine + CoQ10 produced a
creatine in MPTP mouse model of PD neuroprotective effects against dopamine depl

and loss of TH neurons and reduced a-synucl

Creatine HD Dietary supplementation of 2% creatine in Significantly improved survival, slowed motor
N171-82Q HD transgenic mice onset of weight loss, reduced brain atrophy a

intranuclear inclusions

Creatine HD Creatine administration started after onset of Significantly extended survival, improved mot
clinical symptoms in HD RG/2 transgenic mice. reduced neuronal atrophy and huntingtin agg

brain concentrations of creatine and ATP

Creatine + CoQ10 HD Treatment with a combination of CoQ10 and Additive neuroprotective effects in reducing s
creatine in HD RG/2 transgenic mice and 3-NP produced by 3-NP; improved motor performa
rat model of PD survival in transgenic R6/2 HD mice

Creatine ALS Oral administration of creatine in G93A Dose-dependent improvement in motor perfc
transgenic mouse model of ALS extended survival in G93A transgenic mice anc

of motor neurons

Creatine ALS Long-term creatine supplementation in G93A Decreased cortical glutamate concentrations
mice

Creatine ALS Creatine in combination with cyclooxygenase Additive neuroprotective effects and extendec
2 in GY3A transgenic mouse model of ALS significantly improved motor performance, ar

loss

CoQ10 PD In vitro pretreatment of SHSY-5Y cells with Pretreatment with CoQ10 significantly reduce
water-soluble formulation of CoQ10 containing DNA fragmentation and prevented ROS gener
polyoxyethanyl a-tocopheryl sebacate before mitochondria and collapse of MMP
paraquat exposure

CoQ10 PD MPTP PD mouse diet supplemented with Increased striatal dopamine concentrations ar.
CoQ10 {200 mgkg/day) caudal striatum

CoQI10 PD MPTP PD mouse diet supplemented with Neuroprotective effects against DA depletion,
CoQ10 and reduced CoQ10 {ubiquinol) and induction of a-synuclein inclusions in the

CoQ10 PD Water-soluble formulation of CoQ10 in Reduced neurodegeneration and increased ro
drinking water before and during paraquat
treatment in paraquat-induced PD rats

CoQ10 ALS Oral administration of CoQ10 in a transgenic Significantly increased life span and increasec
mouse model of ALS mitochondrial CoQ10 concentrations

CoQ10+ remacemide HD Oral administration of CoQ10 and the NMDA Combination treatment resulted in increased
antagonist remacemide in HD transgenic mice ventricular enlargement, and reduced motor ¢

CoQ10+ Vit E HD Prior administration of antioxidants CoQ10 + Decreased 3-NP toxicity and increased brain ¢
Vit E in 3-MNP-treated aged rats

CoQI10 HD Dietary supplementation with CoQ10 in a Improved early behavioral deficits and norma
slowly progressing transgenic mouse model of deficits without altering huntingtin aggregate
HD

CoQ10 and minocycline HD No behavioral improvement
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Reference

Effects

Disease Treatment

Bioenergetic agent

Oral administration of CoQ10 and minocycline

in HD transgenic mice
Co) 10 and minocycline in RG/2HD transgenic

mice

[381]

Combination treatment enhanced beneficial effects, ameliorating
behavioral and neuropathological alterations, extended survival,

and improved rotarod performance

HD

CoQ10 and minocycline

[482]

Neuroprotective effects of CoQ10 on A{25-35) neurotoxicity

In vitro primary cultured cortical neurons
treated with CoQ 10 and/for Afi(25-35)

AD

CoQ10

[483-485]

Reduced amyloid pathology and improved behavioral performance

in the Tg19959 mouse model of AD

Oral treatment of CoQ10 in AD transgenic mice

AD

CoQ10

[418]

Significant neuroprotective effects on dopaminergic neurons

against MPTP-induced toxicity

Treatment of 55-31 and S5-20 peptides in MPTP

mouse model

FD

Mitochondria-targeted

peptides

Mitochondria-targeted

REK. Chaturvedi, M. Hint Beal / Free Radical Biology and Medicine 683 (2013) 1-29

[417]

Significant improvement in survival and motor performance

Antioxidant peptide SS5-31 treatment in vitro

and in ALS transgenic mice

ALS

peptides

Mitochondria-targeted

[408]

Significant neuroprotection against Aj-induced neurotoxicity

In vitro 55-31 and MitoQ treatment in neurons
from transgenic AD and neuroblastoma cells

treated with Ap

AD

peptides

[411,486]

Reduced Ap-induced pathology, reduced cognitive decline, A

Treatment with MitoQ in transgenic AD mice

AD

MitoQ

accumulation, astrogliosis, synaptic loss, and caspase activation

impaired activity of cytochrome oxidase[90,91]. Over expression of
human a-synuclein gene harboring the A53T mutation in these
mice made them more susceptible towards MPTP and paraquat
mediated neurodegeneration [90]. Electron microscopic studies
suggested increased mitochondrial damage in mice over expres-
sing w—synuclein after MPTP administration [91]. Primary cortical
neurons over expressing mutant AS53T a-synuclein showed
increased mitochondrial autophagy, bicenergetic deficits and neu-
ronal degeneration|92]. Interestingly, a—synuclein knockout mice
are resistant to mitochondrial respiratory chain inhibitors such as
MPTP, 3-nitropropionic acid (3-NP) and malonate, thus implicating
mitochondria in a-synuclein mediated toxicity [93,94].

Parkin (PARK2) mutations are mostly involved in early onset
autosomal recessive juvenile PD, and rarely with sporadic late-onset
PD [95]. Recently, using phase analysis approach heterozygous dele-
tions of the Parlin gene were abserved in early-onset PD patiensts[96].
Single-nucleotide polymorphisms were also observed within the
parkin core promoter in late-onset idiopathic PD patients [97].
Expression of truncated Q311X mutant parkin in mice recapitulates
hallmark features of PD [98]. Parkin null mice and flies exhibit
decreased abundance of a number of proteins important in mitochon-
drial function, reduction in several subunits of complexes | and
IV, reduced respiratory capacity, loss of mitochondrial integrity
and enhanced susceptibility to the complex-1 inhibitor rotenone
[99-101]. Parkin is a ubiquitin E3 ligase, which under normal condi-
tions is selectively recruited to dysfunctional mitochondria, promoting
mitophagy and mitochondrial clearance by catalyzing mitochondrial
ubiquitination [100,101]. Pathogenic mutations in Parkin cause
impaired recognition, transport and ubiquitination of defective mito-
chondria, increased mitochondrial aggregation, and reduced mito-
phagy [102].

Mutations in PTEN induced kinase 1 (PINK1; PARKGE) were
found to be responsible for an autosomal recessive familial form of
early-onset parkinsonism [77,103]. Mutations in PINK1 are asso-
ciated with mitochondrial dysfunction in PD patients[104]. PINK1
is also detected in Lewy Bodies in the brains of sporadic PD
patients and PD associated with heterozygous mutations in the
PINK1 gene [105]. Polymorphisms in the mitochondrial translation
initiation factor 3 (MTIF3), an interactor protein of PINK1, are also
associated with PD [106]. We recently found that mutations in
PINK1, or PINK1 knock-down caused deficits in mitochondrial
respiration and ATP synthesis, and increased «-synuclein aggrega-
tion in cell based PD models[107]. PINK1 mutants are defective in
their ability to regulate opening of the mitochondrial permeability
transition pore, MMP and cytochrome c release [ 108,109]. Recently
it was suggested that PINK1 induces mitochondrial dysfunction by
disturbing Ca?* homeostasis in neuronal cells [110]. PINK1 loca-
lizes to the human and rat brain mitochondrial membranes and
protects cells against stress and the mitochondrial toxin MPTP
[103,105,111,112]. Fibroblasts isolated from familial PD patients
having PINK mutations, exhibit reduced respiratory activity [113].
PINK1 knockout mice have decreased mitochondrial respiration
activity, mitochondrial dysfunction, and enhanced susceptibility to
oxidative stress and PD phenotypes [113,114]. PINK1 binds to and
colocalizes with a mitochondrial molecular chaperone TNF
receptor-associated protein 1 (TRAP1) in the mitochondria. After
binding, PINK1 phosphorylates TRAP1 and protects cells against
oxidative stress by suppressing cytochrome ¢ release from mito-
chondria. PINK mediated TRAP1 phosphorylation and cell survival
is impaired by PD associated mutations in PINK1 genes, suggesting
mitochondrial dysfunction in PD [115]. PINK1 functions upstream
to the Parkin, but both interact genetically and act in a commaon
pathway to maintain mitochondrial integrity and normal mito-
chondrial function [116,117]. A reduction in mitochondrial memn-
brane potential leads to expression of PINK1 on the outer
mitochondrial membrane and phosphorylation of Parkin, which
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then ubiquitinates mitochondria, and targets them for removal by
mitophagy.

Loss-of-function mutations in the D]-1 (PARK7) locus cause rare
autosomal recessive early-onset PD, which account for 1-2% of all
early onset PD [77,80,118]. Mutations in DJ-1 include homozygous
and heterozygous point mutations, deletions and truncations [77].
The levels of D]-1 and dissembled DJ-1 high molecular weight
complex are decreased in the mitochondria from autopsied PD
patient brain[119]. A recent study suggests that D]-1 functions in
synergy with the PINK1/Parkin pathway and regulates mitochon-
drial function and mitophagy [120]. DJ-1 knockdown leads to
enhanced susceptibility to cell death mediated by oxidative
damage in rodents and flies, while DJ-1 over expression provides
cytoprotective effects against cell death [121,122]. Mitochondria
isolated from DJ-1 knockout mouse brains produce increased
levels of ROS [121]. DJ-1 knockout mice are more susceptible to
dopaminergic degeneration and oxidative stress induced by MPTP
and paraquat [123,124]. Lymphoblast derived from DJ-1 patients,
DJ-1 knockout cells and mice display increased mitochondrial
dysfunction, which can be abrogated by the expression of PINK1
and Parkin [121]. Moreover, cells from DJ-1 knockout mice and
human carriers of the DJ-1 E64D mutation have impaired mito-
chondrial respiration, increased mitochondrial ROS, reduced MMP,
altered mitochondrial morphology and accumulation of defective
mitochondria [125]. DJ-1 exerts its neuroprotective effects through
binding on mitochondrial complex-1 and maintaining its activity,
by acting as a transcriptional coactivator, a protease and a
molecular chaperone [77,126]. D]-1 protects against MPTP induced
neurodegeneration by activation of the AKT pathway [127]. DJ-1
also maintains Nrf2 transcriptional activity, which activates both
antioxidants and protein chaperones [128].

Gain of function mutations in leucine-rich repeat kinase 2
(LRRK2; PARKS8) cause sporadic and autosomal dominant early
and late-onset PD [129]. We and others created LRRK2 gain of
function transgenic mouse and fly models that recapitulates
cardinal features of PD [130,131]. Mutations in LRRK2 affect other
proteins which are implicated in PD pathogenesis such as «-
synuclein[132]. A recent study found decreased MMP and total
intracellular ATP levels in fibroblasts from PD patients with the
G2019S mutation in LRRK2 [133]. Caenorhabditis elegans LRRK2
mutants and DA neurons derived from induced pluripotent stem
cells harboring G20195-LRRK2 mutations, display mitochondrial
dysfunction and are more susceptible to mitochondrial toxin
mediated oxidative stress [134,135]. The Omi/HtrA2 is a serine
protease mitochondrial protein localized within the mitochondrial
intermembrane space and invelved in protection against cellular
stress. Loss of function mutations in Omi/HtrA2 gene have been
identified in PD patients, associated with defective activation of
the protease activity of Omi/HtrA2 [136,137]. Omi/HtrA2 knockout
mice exhibit cardinal features of PD such as rigidity and additional
features including ataxia, muscle wasting and premature death
[138]. Omi/HtrA2 deficiency in mice, flies and humans leads to
accumulation of ROS, altered mitochondrial morphology, and
increased levels of the mitochondrial fusion protein OPA[139].
Therefore, multiple lines of evidence suggest a pathogenic role of
familial PD linked mutations in compromising normal mitochon-
drial function in PD pathogenesis.

Impaired mitochondrial movement, mitochondrial Ossionf
fusion and mitophagy in PD

Mitochondrial dynamics properties such as mitochondrial fis-
sion/fusion, trafficking, biogenesis and mitophagy are critical for
normal neuronal function and survival. Mitochondrial fusion is
tightly regulated by proteins such as OPA1, Mfn1, and Mfn2, and

fission mediated by the proteins Fis1 and Drp1. A balance of fusion
and fission processes is very critical for normal mitochondrial
function. Enhanced fusion causes abnormal mitochondrial elonga-
tion, while excessive fission leads to increased mitochondrial
fragmentation and formation of small round defective mitochon-
dria, leading to impaired function of mitochondria. Several studies
have provided convincing evidence of altered mitochondrial
trafficking, reduced mitochondrial biogenesis and impaired bal-
ance of fusion-fission in AD, PD, HD and ALS.

Recently, dysregulation of mitochondrial dynamics processes have
been linked to the pathogenesis of PD [54,140,141). Recent studies
suggested involvement of mutations in both LRRK2 and «-synuclein in
impairments of normal mitochondrial fission/fusion processes in
neurons [142-144]. PINK1 a mitochondria-targeted Ser/Thr kinase,
regulates mitochondrial fusion/fission processes through Drp-1 and
Drpl-interacting protein Fisl [145]. Similarly another recent study
found that mutations in DJ-1 causes impairment of mitochondrial
dynamics through modulation of DRP1 expression [146]. Several
studies have provided compelling evidence that parkin and PINK1
proteins regulate mitochondrial integrity, promote clearance of
dysfunctional mitochondria by mitophagy and regulate axonal trans-
port of mitochondria [147-149]. Interestingly, PINK selectively
accumulates on diseased/damaged mitochondria and recruits them
to parkin for ubiquitination and mitophagy [150]. Similarly, PINK
and parkin by enhancing Miro phosphorylation and degradation,
quarantine damaged mitochondria before mitophagy, by arresting
their movement [151]. The ubiquitination of mitochondrial proteins
such as mitofusins 1 and 2 is very important for identification of
damaged mitochondria for degradation and mitophagy. Parkin and
PINK act in a co-ordinated manner, where as Parkin requires PINK1
for mitochondrial translocation and ubiquitination of mitofusin,
which leads to labeling of terminally damaged mitochondria for
degradation by autophagy [152]. PINK1 and parkin ubiquitinate
mitofusins 1 and 2 for selective removal of damaged mitochondria
in dopaminergic cells, and inhibition of this pathway may lead to the
accumulation of defective mitochondria in dopaminergic neurons
[153]. Recent studies suggested involvement of Voltage-dependent
anion channels (VDAC1) and p62/SQSTM1 in PINK1 and Parkin
mediated mitophagy [154-156].

These studies show that involvement of PINK1 and Parkin play a
crtical role in the regulation of mitophagy. Therefore disease causing
mutations in PINK1 and Parkin may interrupt PINK 1-parkin induced
mitophagy processes in PD [101,157,158]. Moreover, PINK1 and
parkin were directly implicated in abnormal mitochondrial dynamics
in fly, rat and mouse models of PD [140,141].

Mitochondrial dysfunction in Huntington's disease (HD)

HD is an autosomal-dominant devastating neurodegenera-
tive disorder characterized by lesions in the striatum of the
brain, progressive development of involuntary choreiform move-
ments, behavioral and cognitive impairment, neuropsychiatric
symptoms, and premature death. HD is caused by the abnormal
triplet expansion of a CAG repeat in exon-1 of the HD gene,
resulting in elongated polyglutamine stretches in the protein
product known as mutant Htt[159]. In HD, mutant Htt is expressed
ubiquitously, but selective neuranal loss is observed in the brain,
particularly in the striatum. How the mutant Htt protein elicits
its toxic effects remains elusive, but several mechanisms have
been postulated including transcriptional dysregulation, abnorm-
alities in mitochondrial energy metabolism, protein aggrega
tion, and oxidative damage[160,161]. Various lines of evidence
suggest an important involvement of mitochondrial dysfunction
in HD[162].
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Impaired bioenergetics and decreased mitochondrial
complexes activities in HD

Evidence for mitochondrial dysfunction and bioenergetics
defects in HD pathogenesis comes from the presence of remark-
able weight loss in HD patients, despite a normal diet[160]. PET
imaging shows reduced glucose metabolism in the basal ganglia
and cerebral cortex of symptomatic HD patients and presympto-
matic gene carriers, suggesting a bioenergetic defect [163-165]. 1H
Nuclear magnetic resonance (NMR) spectroscopy demonstrated
decreased N-acetylaspartate and increased levels of lactate in the
basal ganglia of symptomatic and some pre-symptomatic HD
patients|166-169]. These studies found that mitochondrial dys-
function and bioenergetics defects are present even in the asymp-
tomatic HD carriers, suggesting these defects may initiate disease
onset. Using NMR spectroscopy we and others found widespread
bioenergetics defects in the skeletal muscle of HD patients
[167,169,170]. Reduced activity of key components of oxidative
phosphorylation and the TCA cycle, mitochondrial complexes I1-1V
and aconitase is observed in the HD patients, with no alterations in
complex-1 activity[160,169,171-173]. Increased glucose utilization
relative to oxygen utilization was found in the striatum of early HD
patients|[174]. Inducible yeast model of HD expressing a human Htt
fragment showed decreased cell respiration, an altered amount
and function of the mitochondrial respiratory chain complexes 11
111 and altered mitochondrial morphology and distribution[175].

Bioenergetics defects in HD were not confined only to the
brain, but were also observed in the peripheral tissues such as
muscle and platelets[167,169,170,176,177), and knockin Htt striatal
cells[178]. Lymphocytes derived from HD patients displayed
decreased MMP and increased mitochondrial mediated apoptosis
[179]. Reduced ATP/phosphocreatine (PCr) ratio, decreased PCr/f
inorganic phosphate ratio, low ATP levels and impaired complex-1
activity were evident in the muscle of symptomatic and presymp-
tomatic HD patients, suggesting biocenergetic disturbances
[162,167,170,176]. Recently we found reduced mitochondrial
respiration and cytochrome oxidase expression in myoblasts from
HD patients, and brain and muscle from NLS-N171-82Q HD
transgenic mice, these defects were exacerbated in chronic energy
deprivation conditions [180,181]. Another recent study found
increased lactate synthesis and striking mitochondrial structural
abnormalities in the muscle from symptomatic HD patients[182].
These studies suggest that mutant Htt may affect other cell types,
with high energy demand. Lymphoblasts from HD patients and
brain mitochondria from HD transgenic mice display decreased
MMP, impaired Ca®* homeostasis[183], and altered morphology
[184]. Peripheral mitochondrial defects in HD are evident from a
study showing that HD patient—derived lymphaoblastoid cell lines
have decreased ATP/ADP ratios[185]. Similarly, mouse immorta-
lized striatal cells expressing endogenous mutant Htt (STHdhQ111)
also showed decreased ATP levels and ADP uptake, suggesting that
bioenergetics defects in the peripheral tissues emulate the defects
in the brain[185]. Further, mitochondrial respiration and ATP
production are significantly impaired in the striatal cells from
mutant Htt knock-in mouse embryos[178]. Reductions in the FAD
subunit (SDH-A) and the iron-sulfur cluster subunit (SDH-B) of
complex-Il were found in the HD caudate and putamen, suggest-
ing that complex-I1 subunit reductions are associated with neuro-
nal death[186]. Expression of pathogenic N-terminal Htt fragment
in cultured striatal neurons caused decreased complex-1I enzy-
matic activity and selective reductions of SDH-A and B. Interest-
ingly, over expression of complex-11 subunits in striatal neurons
expressing Htt171-82Q restored complex-Il activity and blocked
mitochondrial dysfunction and cell death, suggesting involvement
of complex-II dysfunction in HD pathogenesis| 186]. Moreover, the
mitochondrial toxins 3-NP and malonate, which selectively inhibit

complex-Il, induce a pathological phenotype similar to HD in
rodents, primates, and humans further implicating a role of
mitochondrial dysfunction in HD pathogenesis [159,160,187,188].
The 3-NP induced model of HD also show decreased State
3 respiration and compleX-1+II inhibition and decreased succinate
dehydrogenase activity[189]. Mutant Htt makes cells more sus-
ceptible to 3-NP induced mitochondrial dysfunction and cell death
[190].

mitDNA mutations and polymorphisms in HD:

A large body of evidence suggests involvement of mtDNA
mutations in the pathogenesis of HD. Lymphocytes, leucocytes
and cortical tissues from HD patients have higher frequencies of
mtDNA deletions as compared to controls [191-193]. Variations in
mitochondrial haplogroup H are associated with altered ATP
levels, mitochondrial dysfunction, and age of onset in HD[194].
The severity of HD phenotypes is directly related to the size of the
CAG repeats expansion in patients[191,192]. Increased mtDNA
damage has been reported in the 3-NP induced and the RS/2
transgenic mouse model of HD [195]. Cybrids harboring mtDNA
from HD patients display impaired mitochondrial function and
enhanced mitochondrial mediated apoptosis, suggesting that
mitochondrial defects from HD patients are transferable[196].

Mitochondrial localization of mutant huntingtin in HD

Mutant Htt plays an important role in mitochondrial dysfunc-
tion in HD through several mechanisms. Mutant Htt may directly
bind to the mitochondria. Studies from both a HD transgenic
mouse model, and from HD striatal cells (STHdhQ111), showed
localization of mutant Htt to the outer mitochondrial membrane
[183,197]. Htt aggregates were found to be localized to the
mitochondria in the brains of transgenic HD mice, suggesting that
mitochondrial dysfunction contributes to the disease[198]. Elec-
tron microscopy studies found localization of N-terminal mutant
Htt on neuronal mitochondrial membranes|[183].

Altered mitochondrial calcium handling

There is defective mitochondrial Ca** homeostasis in HD.
Mutant Htt enhances the susceptibility of mitochondria to the
Ca?* induced permeability transition and cytochrome c release
[183,199]. Enahnced suscepetibilty towards Ca®* induced inhibi-
tion of complex-1 dependent respiration, a lower sensitivity to
Ca?* activation, and deficient respiration were observed in the
mitochondria from HD transgenic mice [200,201]. Huntingtin
striatal cells displayed Ca?* induced decrease in cellular respira-
tion, reduced mitochondrial Ca?* uptake capacity and enhanced
MMP [202,203]. Mitochondria from huntigtin striatal cells and
from HD transgenic mice are unable to handle large Ca®* loads and
more susceptible towards Ca®* induced oxidative stress[203,204].
Incubation of mitochondria isolated from normal lymphoblasts
with mutant Htt recapitulates mitochondrial dysfunction seen in
HD patients and HD transgenic mice, suggesting that the mito-
chondrial defects in HD are a direct effect of the mutant Htt[183].

Altered mitochondrial dynamics and trafOcking in HD

Mutant Htt also impairs in vitro and in vivo trafficking of
mitochondria in neurons, leading to loss of mitochondrial motility
and eventually mitochondrial dysfunction[205-208]. There is
increased expression of Drpl and Fisl and reduced expression of
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mitofusins and OPA1 in cellular models of HD, and HD postmor-
tem brain tissue and mutant Htt binds to Drpl and increases its
mitochondrial fission enzymatic activity [209-213]. Mitochondrial
fragmentation, presence of disrupted cristae, swollen mitochon-
dria and increased suscepetibility towards apoptotic stimulai are
obserevd in transgenic mice and cellualr models of HD[214,215].
Increased vacuolization, disturbed cristae, and the presence of
giant mitochondria were observed in the skin fibroblast and
muscle tissues from HD patients[216]. This evidence comprehen-
sively indicates a role of mutant Htt in mitochondrial Ca®*
handling defects, respiratory deficits, and impaired mitochondrial
movement, which may play important roles in the mitochondrial
dysfunction which occurs in HD.

Transcriptional dysregulation in HD

Mutant Htt may also impair mitochondrial function by altering
transcription. Aberrant transcriptional regulation occurs due to
binding of mutant Htt to several transcriptional regulators, and
interfering with their function. Mutant Htt directly interacts and
down regulates the activity of several transcription factors includ-
ing p53, cAMP response element binding protein (CREB), TAFII120
and SP1 [217-223]. Binding of Htt to these transcription factors
leads to alteration of expression of several genes involved in
mitochondrial respiration and normal mitochondrial function.
Htt binding to p53 causes up regulation of the downstream target
genes BAX and PUMA, which leads to increased mitochondrial
membrane depolarization[224]. Mutant Htt also represses the
expression of CREB by a direct interaction with CREB binding
protein [219,223,225]. Expression of CREB is reduced in the brain
and muscle of HD transgenic mice and in HD cell models
[180,181,218]. CRE dependent transcription is also reduced in HD
[217,226]. Over expression of CBP rescued polyglutamine-induced
neuronal toxicity [219]. CREB knockout mice show extensive
apoptosis of post mitotic neurons and exhibit a phenotype similar
to that in HD transgenic mice[227]. Recently, an interaction of
mutant Htt with PGC-1a has been implicated in HD pathogenesis
[228]. PCC-1a is a coactivator of several transcription factors, and a
key regulator of mitochondrial biogenesis, energy homeostasis,
adaptive thermogenesis, and glucose metabolism|[229]. PGC-1a
expression and activity are impaired in the brain and muscle
tissues from HD patients, and in transgenic mouse models of HD
[180,181,228,230,231]. Mutant Htt protein directly impairs the
ability of PGC-1a to activate downstream target genes involved
in mitochondrial biogenesis and adaptive thermogenesis [231].
Collectively, these data support a role for PGC-la transcription
interference in the degeneration of the striatum in HD. Of
particular interest is the finding that the expression of PGC-1a is
reduced several fold in medium spiny neurons but increased
almost 50-fold in nNOS interneurons from knock-in HD mice
[228]. This suggests that the selective vulnerability of medium
spiny neurons and the resistance of interneurons, which are
spared in HD, may be a consequence of altered PGC-1« expression
and mitochondrial dysfunction. Down-regulation of PGC-1a sig-
nificantly worsened behavioral and neuropathological abnormal-
ities in a PGC-1a knock-out/ HD knock-in mouse model (PGC-1u
KO/KI)[228]. Over expression of PGC-1a in the striatum of R6/2
mice results in a significant increase in mean neuronal volume,
indicating that PGC- 1« over-eXpression prevents neuronal atrophy
[228]. PGC-1u is rapidly induced in response to cold exposure and
has been shown to regulate key components of adaptive thermo-
genesis including the uncoupling of respiration via mitochondrial
uncoupling proteins (UCP-1), resulting in heat production in BAT.
Significant hypothermia at both baseline and following cold
exposure was observed in both N171-82Q and R6/2 HD mouse

models. Following cold exposure, UCP-1 expression is decreased in
BAT from NI171-82Q transgenic HD mice relative to wild type
controls, implicating impaired PGC-1« function in these mice. This
failure to induce UCP-1 and other PCC-1« target genes is further
demonstrated in pre-adipocyte cells and primary brown adipocyte
cells from N171-82Q mice. In brown fat adipocytes, there is also
evidence of reduced ATP/ADP ratios and mitochondrial numbers
similar to the findings in PGC-1a KO mice [232], N171-82Q BAT
shows marked abnormalities including increased lipid vacuolation.
The finding that UCP-1 expression is reduced but not PGC-lu
strongly indicates that mutant Htt blunts the response of PGC-1la
in HD models [228,231].

Mutant Htt also binds to the CREB/TAF4 complex which impairs
activation of the PGC-1a promoter, and transcription of its target
genes [228,230]. Impairment of PCC-la function, and down
regulation of its mitochondrial target genes, leads to abnormalities
in mitochondrial function and energy metabolism, and ultimately
neuronal demise [220]. PGC-1« activates a diverse set of metabolic
programs in different tissues by forming complexes with several
transcription factors, including nuclear respiratory factors (NRF-1
and NRF-2) and nuclear hormone receptors (PPAR«, PPARy, ERRa
and thyroid receptor) [229,233]. It also regulates the activity of
several nuclear encoded mitachondrial genes including Tfam and
cytochrome ¢ [233,234]. PGC-1a KO mice exhibit mitochondrial
dysfunction, defective bioenergetics, a hyperkinetic movement
disorder and striatal degeneration, which are features also
observed in HD [232,235]. We and others found that over expres-
sion of PGC-1« in muscle and brain tissues reduces mitochondrial
dysfunction, and enhances mitochondrial biogenesis in transgenic
HD mice [180,228]. Selective ablation of PGC-1« leads to increased
striatal neuron degeneration, and increased susceptibility to the
mitochondrial toxin 3-NP in HD transgenic mice [228]. Further-
more, polymorphisms in PGC-1a and its downstream target genes
such as NRF-1 and Tfam modulate the age of onset of HD,
providing further evidence that it plays an important role in HD
pathogenesis [236-239]. Impaired PGC-1« transcription and activ-
ity impacts the oxidant enzyme systems that combat ROS. This
leads to down regulation of ROS defense genes encoding 50D1,
SOD2Z, and glutathione peroxidase, resulting in increased oxidative
damage and neuronal death [240]. We observed significantly
decreased expression of PGC-1« and its downstream target genes,
and impaired mitochondrial biogenesis in the muscle tissue of HD
transgenic mice, myoblasts and muscle biopsy tissue from HD
patients [180]. Adenoviral vector mediated over expression of
PGC-1a in the muscle tissue resulted in increased PGC-1a expres-
sion, mitochondrial biogenesis and increased numbers of oxidative
muscle fibers in HD transgenic mice [180]. We also observed a
significant decrease of PGC-1a expression, increased gliosis and
increased Htt aggregates in the striatal tissue of HD transgenic
mice [181]. In HD striatal neurons there is a significant pathologic
grade dependent reduction in numbers of mitochondria, which
correlates with reductions in PGC-la. Taken together there is a
large body of evidence which shows that both mitochondrial
dysfunction and oxidative damage contribute to the pathogenesis
of HD which may be a consequence of impairment of PGC-1a, and
other transcriptional pathways, which regulate mitochondrial
biogenesis and expression of antioxidant defenses.

Mitochondrial dysfunction in Alzheimer's disease (AD):

AD is a late-onset, progressive, age-dependent neurodegenera-
tive disorder, characterized by the progressive cognitive decline.
The pathology of AD invelves intraneuronal accumulation of
amyloid plaques (aggregates of Ap) and neurofibrillary tangles
(aggregates of tau). Several studies suggested mitochondrial
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dysfunction as a significant contributing factor to onset and
progression of AD. According to the “mitochondrial cascade
hypothesis” mitochondrial dysfunction is the primary event in
pathogenesis of AD[241].

Mitochondrial bioenergetics impairment in AD

Soluble forms of Ap cause reduced MMP and ATP levels in the
brains of AD transgenic mice harboring mutant APP and mutant
PS1 (tgAPP/PS1)[242]. Similarly APP, Tau and PS2 triple transgenic
AD mice displayed decreased mitochondrial protein levels mainly
related to complexes 1 and IV of the electron transport chain,
reduction of the MMP and decreased synthesis of ATP[243].
Interestingly Tau and Ap act synergistically to impair oxidative
phosphorylation, where dysregulation of complex-I both at the
protein and activity levels was tau dependent, and dysregulation
of complex-1V was Ap dependent[243]. Intrahippocampal stereo-
taxic injection of AB in rats caused damaged mitochondria,
decreased Ca®* ATPase activity and MMP, and increased Ca**
levels[244]. Full length APP binds directly to the mitochondria in
cortical neuronal cells from AD transgenic mice and causes
mitochondrial dysfunction and impaired energy metabolism
[245]. APP also causes mitochondrial dysfunction by accumulation
in the mitochondrial import channels (TIM23 and TOM40) of AD
brain[246].

PET imaging showed decreased resting-state brain glucose
metabolism, decreased blood flow and metabolic failure in AD
brains[247,248]. Decreased expression of genes involved in glu-
cose delivery, oxidative phosphorylation, and energy consumption
in the brain were observed in AD[249]. The activities of TCA
enzyme complexes, pyruvate dehydrogenase, isocitrate dehydro-
genase, and KGDH were found to be impaired in postmortem AD
brain and fibroblasts from AD patients [250-252]. Levels of ATP
and activities of cytochrome oxidase and mitochondrial ATP
synthase are decreased in platelets and brain tissue of AD patients
[253-255]. Similarly, reduced respiratory chain complexes 1, 11,
and IV activity were found in platelets and lymphocytes from AD
patients and AD postmortem brain tissue[253,256-258]. Fibro-
blasts derived from AD patients show decreased cytochrome ¢
oxidase (complex-1V) activity [259]. A Genome-wide transcrip-
tomic study showed reduced expression of nuclear encoded
mitochondrial electron transport genes in carriers of AD[260].
The expression of cytochrome oxidase subunit II (COX II) was
decreased in AD brain[261]. The protein levels of complex I-IV
subunits were also decreased in AD[260]. Mitochondrial proteome
analysis found dysregulated protein levels of citric acid cycle,
oxidative phosphorylation, pyruvate metabolism, glycolysis, and
mitochondrial protein synthesis pathways in the triple transgenic
mouse model of AD which has APP, PS1 and Tau mutations[262].
Over-expression of APP intracellular domain in human neuroblas-
toma cells causes decreased MMP and altered mitochondrial
morphology and distribution[263]. Hippocampal and cortical
mitochondria isolated from AP transgenic mouse models of AD,
have impaired mitochondrial respiration rates, ROS production,
MMP, and cytochrome ¢ oxidase activity[264].

Mitochondrial localization of AT impaired mitochondrial dynamics
and trafficking in AD

In addition to a direct mitochondrial respiratory chain defect,
maore recently, increased autophagic degradation of mitochondria
has also been observed in AD[265]. A recent study showed
increased mitochondrial fragmentation and decreased mitochon-
drial biogenesis in Ap transgenic AD mice[266]. Several studies
suggested defective mitochondrial fusion/fission, mitochondrial
movement, altered mitochondrial dynamics and mitophagy in

AD transgenic mice and AD patients [267-269]. A critical balance
of mitochondrial fusion and fission, which is required for normal
mitochondrial functioning, was found to be impaired in AD brain
[270]. In the neurons, synapses are the sites of highest energy
demand and increased bioenergetic activities. Synaptic mitochon-
dria from Ap AD transgenic mice are more susceptible to Ap
induced mitochondrial dysfunction as compared to non-synaptic
mitochondria[271]. Synaptic mitochondria show increased age
associated accumulation of Ap, mitochondrial dysfunction,
increased mitochondrial permeability transition, decreased mito-
chondrial respiration and cytochrome ¢ oxidase activity[271]. Ap
also causes altered mitochondrial distribution and trafficking,
reduced mitochondrial movement and length, and increased
synaptic degeneration [271,272].

There is ample evidence suggesting that mitochondria are
prime targets for amyloid precursor protein (APP), which affects
mitochondrial import channels and for Ap which interacts with
numerous mitochondrial proteins and leads to mitochondrial
dysfunction[273]. Ap causes mitochondrial dysfunction by directly
interacting with Ap binding alcohol dehydrogenase (ABAD) in the
mitochondria of AD transgenic mice and patients|274]. Inhibition
of this interaction leads to attenuated mitochondrial dysfunction
and decreased Ap mediated toxicity in AD transgenic mice[275].
Decreased mitochondrial respiration, decreased pyruvate dehy-
drogenase protein levels and increased AB-ABAD interactions were
observed in AD triple transgenic mice[276]. Ap from mutant APP
transgenic mice also binds to mitochondria and causes mitochon-
drial dysfunction[277].

The pathogenic protein Ap may induce mitochondrial dysfunc-
tion by directly binding to mitochondria[278,279] and mitochon-
drial proteins such as omi/HtrA2[280]. Ap accumulates in the
mitochondria, reduces the enzymatic activity of complexes 1II
and IV and decreases mitochondrial respiration[277,281]. A recent
study found that intraneuronal and oligomeric forms of Ap co-
localize with Drpl in the AD brains and Ap precursor protein
transgenic mice, and co-localization is increased as the disease
progresses [267]. Further, expression of genes involved in mito-
chondrial fission (Drpl and Fisl) and mitochondrial fusion (Mfn1,
Min2, Opal and Tomm40) is altered in AD brain[267]. This
abnormal interaction resulted in increased mitochondrial frag-
mentation and abnormal mitochondrial dynamics[267]. Over-
expression of APP and Ap in neuronal cells leads to alterations in
mitochondrial morphology and distribution and impaired mod-
ulation of the mitochondrial fusion/fission machinery [282].
Another recent study suggested that Ap mediated impairment of
mitochondrial anterograde and retrograde axonal transport in
neurons[272]. Ap caused decreased mitochondrial numbers, mito-
chondrial velocity, and mitochondrial length[272]. Dynamin-like
protein-1 (DLP1) a member of the dynamin large GTPases family,
regulates mitochondrial fission and the normal distribution and
morphology of mitochondria. The levels of DLP1 were found to be
decreased, and they were associated with abnormal mitochondrial
distribution and the presence of elongated mitochondria in
fibroblasts from sporadic AD patients[283]. Mitochondrial dys-
function and cognitive impairment in AD transgenic mice are
directly proportional to the levels of mitochondrial A[264].

mtDNA encoded defects in AD

Cybrid cell lines with mtDNA from AD patients display the
same pathology and phenotype observed in the AD brain
[284,285]. Trans mitochondrial cybrid neuronal cells displayed
reduced mitochondrial movement, reduced numbers of moving
mitochondria, decreased MMP, altered mitochondrial morphology
and synaptic degeneration[49,286]. Cybrid cells were more sus-
ceptible to Ap induced toxicity and displayed enhanced MMP,
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increased cytoplasmic cytochrome ¢ levels, elevated caspase-3
activity and enhanced cell death[287]. AD cybrids also have
increased secretion of Ap and intracellular Ap levels with Congo
red-positive Ap deposits[285].

Several studies suggest that mtDNA mutations also play an
important role in mitochondrial dysfunction in AD pathogenesis.
Recently, variations in mtDNA were found to be associated with
AD pathogenesis[288]. Heteroplasmic somatic mtDNA control
region mutations were observed in AD patients, which caused
reduced mtDNA ND6 transcript expression and reduced mtDNA
copy numbers[289]. Somatic mutations in the mtDNA control
region accumulate in the brain and blood of AD patients and the
frequency of mutations increased with age[289,290]. Point/mis-
sense mutations in the mitochondrial-encoded cytochrome ¢
oxidase subunits I, II, and Il genes were observed in AD patients
[291-294], however direct sequencing of the complete mtDNA
coding region has not identified disease specific mutations[295].
Recent studies suggested an association of polymorphism in Tfam
and in the regulatory region of the presenilin-2 gene, with late
onset AD [296,297].

Mitochondrial dysfunction in Amyotrophic lateral sclerosis
(ALS)

ALS is a fatal motor neuron disease, characterized by a progressive
and selective degeneration of upper and lower motor neurons in the
spinal cord, brainstem, and motor corteX, leading to leading to
muscle weakness, paralysis and death|3]. ALS is either sporadic or
familial in origin, 90% of cases are sporadic with an unknown cause
and 10% are familial. Approximately 20% of familial ALS cases are
associated with mutations in SODI, the gene encoding Cu/Zn-SOD.
Mutations in RNA Transactivation response DNA-binding protein 43
(TDP-43) and FUS/TLS are also associated with familial ALS[298].
TDP-43 transgenic mice recapitulate the features of ALS[299,300].
Transgenic TDP-43 mice expressing full-length human TDP-43
showed abnormal juxtanuclear aggregates of mitochondria and
decreased expression of mitofusin 1, involved in mitochondrial
fusion|[301]. Several different pathogenic mechanisms have been
identified in the CNS and peripheral tissues during the disease
course in ALS, but mitochondrial and bioenergetic defects are
implicated widely in ALS pathogenesis[2]. Sporadic ALS patients
have increased levels of 8-hydroxy-2'-deoxyguanosine in the CSF,
suggesting increased oxidative damage|302,303]. Altered respiratory
chain enzyme activities and CNS energy hypometabolism were
observed in ALS spinal cord and motor cortex|304-308]. SOD1 over
expressing G93A ALS transgenic mice displayed altered mitochon-
drial morphology as primary pathologic changes followed by
decreased mitochondrial respiration [306,309,310]. Motor neuron
cell lines expressing mutant SOD1 displayed decreased ATP levels
and impaired respiratory chain enzyme activities [311,312]. We found
decreased oxygen consumption, mitochondrial Ca®* loading capacity,
respiratory chain complex activities and ATP synthesis in the brain
and spinal cord mitochondria from mutant SOD1 transgenic mice
[313,314]. A recent study found that over-expression of mutant
human SOD1 (G37R) in neuronal cells resulted in morphological
abnormalities of mitochondria, reduced activity of the oxidative
phosphorylation complex [, II and IV, reduced MMP and decreased
levels of cytosolic ATP[315,316]. Mitochondrial abnormalities such as
morphological alterations, decreased MMP reduced mitochondrial
depolarization, respiratory chain defects, increased o g signaling
and increased apoptosis are observed in platelets[317,318] and
muscle[319-321] of mutant SOD1 transgenic ALS mice and ALS
patients. An ALS transgenic mouse model expressing a mutant
SOD1 gene with G93A mutation selectively in skeletal muscle,
displayed muscular atrophy, reduced muscle strength, altered muscle

contractile ability, increased mitochondrial dysfunction and increased
oxidative stress[322]. Over expression of mutant SOD1 with the G93A
mutation in neuronal cells caused impairment of mitochondrial
calcium handling[323].

Interaction of mutant SOD1 with mitochondria in ALS

Pathogenic mutant SOD1 appears to exert its pathogenic properties
and induce mitochondrial dysfunction by direct interactions with
mitochondria. Several studies found localization of mutant SOD1 in
the mitochondrial intermembrane space, outer mitochondrial mem-
brane and matrix [324,325]. It also selectively associates with the outer
mitochondrial membrane in spinal cord motor neurons|324-326]. We
found that mutant SOD1 forms macromolecular aggregates and
compartmentalizes into the mitochondrial matrix[327,328]. It has
been suggested that mutant SOD1 fails to fold properly, and forms
aggregates, and disturbs the physiological regulation of mitochondrial
import and retention[328)]. However, the mechanism by which mutant
SOD1 forms aggregates on the outer membrane, or in the matrix of
mitochondria, and the etiology of the selective association with spinal
cord motor neuron mitochondria are obscure[324,328]. After binding
to the mitochondria, mutant SOD may cause mitochondrial dysfunc-
tion by several means. Mutant SOD damages the mitochondrial
membrane that leads to decreased MMP, and swelling, and vacuolar
degeneration of mitochondria[329,330]. It also causes impaired
respiratory complex activity, decreased ATP production, impaired
calcium and redox homeostasis, and increased mitochondria mediated
apoptosis [298,310,331-333]. Mutant SOD1 caused clustering of axonal
mitochondria in ALS transgenic mice[334]. Mutant SOD1 over expres-
sion in NSC34 cells resulted in increased fragmentation of motor
neuron mitochondria, and inhibition of specific components of the
mitochondrial electron transfer chain [316,335]. Mutant SOD1 binds
with the mitochondrial anti-apoptotic protein Bcl-2 in mouse and
human spinal cords [326]. Formation of the toxic mutant SOD1/Bcl-2
complex leads to conformational changes in Bel-2, and mitochondrial
dysfunction including altered mitochondrial morphology, reduced
mitochondrial membrane integrity and increased release of cyto-
chrome ¢[336]. Mutant SOD1 impairs fast axonal mitochondrial
transport in the anterograde direction in motor neurons derived from
SOD1 G93A transgenic mice[337]. Another study reported impaired
mitochondrial transport in both anterograde and retrograde directions
in differentiated NSC34 cells over expressing mutant SOD1[338]. These
studies suggest that mutant SOD1 is associated with mitochondrial
dysfunction in the pathogenesis of ALS.

There is more limited information linking sporadic ALS to
mitochondrial dysfunction. However studies in muscle biopsies
in sporadic ALS patients have shown abnormal mitochondrial
function, reduced neuronal NOS, and impaired functions of
mitachondrial enzymes [339]. Others studies found respiratory
chain defects, mitochondrial alterations and impairment of
mtDNA in muscle and dorsal root ganglion cells of sporadic
ALS patients[319,320,340,341]. Muscle biopsies of individuals
with sporadic ALS also show increased mitochondrial velume
and calcium levels within the mitochondrial 342 ]. Another study
showed reduced cytochrome oxidase activity in anterior horn
motor neurons of patients with sporadic ALS[307]. A recent
study found decreased mRNA expression of PGC-1« and down-
stream genes involved in mitochondrial biogenesis in muscle
tissues of human sporadic ALS patients [343]. These studies
provide some insight about role of mitochondrial dysfunction in
pathogenesis of sporadic PD. However, exactly what percentage
of sporadic ALS patients has mitochondrial pathology is not
known since in many cases they have not been studied and
needs to be investigated.
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Mitochondrial dysfunction in Friedreich's ataxia (FA)

FA is an autosomal recessive disorder which is the most
frequent hereditary ataxia. It is characterized by progressive gait
and limb ataxia, decreased vibration sense, absence of tendon
reflexes, lower-limb areflexia, and muscular weakness in the legs.
FA is caused by a GAA triplet repeat expansion due to loss of
function mutations in intron 1 of the Frataxin (FXN) gene[344].
The FXN protein is mitochondrial chaperone and is mainly
involved in iron metabolism, biogenesis of enzymes with Fe-S
clusters, and detoxification of excess Iron. Deficiency of FXN leads
to an accumulation of iron in the mitochondria, enhanced cellular
iron uptake and impaired activity of Fe-§ cluster enzymes|2].
Defective mitochondrial complex I, 11, and IIl activities, decreased
ATP content and mitochondrial dysfunction are observed in con-
ditional FXN knockout mice, yeast mutants and patients with FA
[344-348). These studies suggest a central role of mitochondrial
dysfunction in FA pathogenesis

Mitochondrial dysfunction in Charcot-Marie-Tooth disease
(CMT)

CMT is the most common form of hereditary peripheral neuro-
pathy, characterized by loss of muscle tissue and touch sensation. The
evidence for involvement of mitochondria in CMT is mostly for the
axonal form of the neuropathy which is CMT type 2A (CMTZ2A).
CMT2A is mainly caused by mutations in the Mitofusin 2 (MFN2) gene,
which encodes a mitochondrial membrane protein involved in mito-
chondrial fusion[349]. Transgenic mice having a mutated form of the
human MFN2 in neurons have decreased mitochondrial complex
activity, decreased ATP synthesis and a phenotypes similar to
CMTZ2A[350,351]. There are other mutations such as ganglioside-
induced differentiation-associated-protein 1 gene (GDAP1), and
DHTKD1 which affect mitochondria and involved in pathogenesis of
CMT. Mutations in the ganglioside-induced differentiation-associated-
protein 1 gene (GDAP1), are associated with the recessive forms of
CMT (CMT4A) and rarely with the autosomal dominant forms
(CMT2K)[352]. GDAP1 encodes a protein localized to the mitochon-
drial outer membrane, and plays a role in mitochondrial dynamics by
promoting mitochondrial fission. Mutations in GDAP1 lead to mito-
chondrial dysfunction, mitochondrial complex-1 deficiency, altered
mitochondrial dynamics and impaired energy generation[352,353].
Mutations in the neurcfilament light gene cause CMT type 2E (CMT2E)
which affects axonal mitochondrial transport[354).

Mitochondrial therapeutics for neurodegenerative diseases

Several studies suggest that bioenergetics defects, altered
mitochondrial dynamics, impaired mitochondrial trafficking, and
transcriptional dysregulation play an important role in the mito-
chondrial dysfunction which occurs in neurodegenerative disor-
ders. Thus, agents which enhance mitochondrial bioenergetics are
attractive potential therapeutics for amelioration of mitochondrial
dysfunction in neurodegenerative diseases. We have summarized
the potential therapeutic effects of bicenergetic agents in animal
madels and clinical trials for neurodegenerative disorders.

Creatine

Creatine is a guanidino compound found primarily in meat
products and involved in energy supply to the muscle and nerve
cells. In the body, creatine is found as free creatine and phospho-
creatine (PCr) which together make the total creatine pool. In
tissues with high energy requirements such as skeletal muscle and

brain, creatine gets transformed into PCr by cytosolic and mito-
chondrial creatine Kinase (CK). CK is an important enzyme, which
maintains cellular homeostasis by reversibly converting creatine
into PCr, thus creating a pool of PCr for ATP generation. Creatine
exerts neuroprotective effects in several animal models of neuro-
degenerative disorders including PD, AD, HD, and ALS [355,356]. It
also protects neuronal cells against 3-NP, MPP+, and 6-
hydroxydopamine (6-OHDA) mediated toxicity and glucose and
serum deprivation[ 161 ]. We found reduced degeneration of dopa-
minergic neurons in the substantia nigra and reduced depletion of
dopamine levels in a MPTP induced mouse model of PD, following
creatine administration[357]. Creatine supplementation was pro-
tective against a variety of neurotoxic injuries such as NMDA,
malonate, Ap and the neurotoxin ibotenic acid induced neuronal
death [161]. Creatine alone exhibited neuroprotective effects,
however it produced additive neuroprotection when co-
administered with either nicotinamide, a cyclooxygenase-2 inhi-
bitor or minocycline[161]. Creatine also produced additive neuro-
protective effects in MPTP treated PD mice and in a transgenic
mouse model of ALS, when given in combination with either a
cyclooxygenase-2 inhibitor or minocycline [358-360]. We also
found that creatine mediated protection of motor neurons and
extended the survival of G93A transgenic ALS mice [361]. Creatine
supplementation was also neuroprotective in several transgenic
mouse models of HD. Oral dietary supplementation of Creatine
reduced motor deficits, brain atrophy, Htt aggregates in the
striatum, reduced mitochondrial dysfunction and enhanced survi-
val in HD transgenic mice[362-364]. Combination therapy of
creatine with the bioenergetic compound CoQ10 produces addi-
tive neuroprotective effects in rodent models of PD and HD[365].
These studies suggest that creatine has significant neuroprotective
potential in both in vitro studies and in a variety of toxin and
genetic models of neurodegenerative disorders.

Clinical trials with creatine in PD

In a randomized, double-blind, placebo-controlled cross over
study in patients with mitochondrial cytopathies, we observed
beneficial effects of creatine[366]. A small pilot trial with creatine
in PD patients suggested benefical effects of creatine on patients
mood but not on the Unified Parkinson’'s Disease Rating Scale
(UPDRS) scores[367]. A creatine dose of 4 gjday was found to be
safe and well tolerated in a placebo controlled randomized clinical
trial in aged PD patients[368]. Creatine supplementation enhanced
muscle endurance and upper body strength in PD patients, when
given with resistance training[369]. The NINDS NET-PD investiga-
tors carried out a randomized, double-blind, Phase II futility
clinical Neuroprotective Exploratory Trials (NET) of creatine and
minocycline in early PD patients and found reduced UPDRS scores
with significant tolerability for creatine and minocycline with no
futility[370]. Further, NET-PD investigators carried out an add on
phase II futility study of 10 g/day creatine and 200 mg/day
minocycline for 18 months in early PD patients, and found that
creatine was safe and tolerable[371]. Thereafter, NINDS with the
NET-PD investigators initiated a double-blind placebo controlled
phase III clinical trial [355,372]. This trial is examining 1,720
patients with early stage PD, randomized to 10g of creatine or
placebo at 51 medical centers in the United States and Canada. The
patients will be studied for the next 5 to 7 years. Altogether these
clinical trials suggest a possible protective role of creatine in PD
patients.

Clinical trials of creatine in HD

Several clinical trials with creatine have been carried with
promishing outcomes. We carried out a 16-week, randomized,
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double-blind, placebo-controlled phase 11 clinical trial in HD
subjects to assess the safety and tolerability of creatine[373]. We
found that a dose of 8g/day of creatine for 16 weeks was safe and
well tolerated, and decreased serum 8-hydroxy-2-deoxyguanosine
a marker for oxidative stress back to baseline levels in HD patients.
Higher doses of creatine (30g/day) showed significantly improved
clinical outcomes including slowing of the ongoing cortical atro-
phy in HD patients in an open-label add on clinical trial. Recently a
double blind placebo controlled phase Il clinical trial with creatine
was initiated by the Huntington Study Group. This clinical trial is
currently ongoing at a large number of centers, where maximum
tolerated dose of creatine and UHDRS scores, cognition, and
quality of life will be studied in HD patients. Taken together, these
clinical trials suggest that creatine is a promising neurotherapeutic
agent in a variety of neurodegenerative disorders.

CoQ10

CoQ10, is an endogenous biological substrate for the electron
transport chain and an important anti-oxidant in mitochondrial
membranes. It exerts neuroprotective effects in in vivo and in vitro
models of neurodegenerative disorders[161]. CoQ10 protects
dopaminergic neurons against MPTP mediated neurotoxicity
[374,375]. CoQ10 reduces mitochondrial dysfunction and provides
neuroprotection against a wide range of toxicants including
paraquat, rotenone, and iron in dopaminergic neurons[161]. We
found that CoQ10 mediated protection of dopaminergic neurons,
increased dopamine levels, and reduced a-synuclein aggregation
in a chronic MPTP model of PD[376,377]. We and others found that
CoQ10 reduces the mitochondrial dysfunction, reverses the disease
pathology, reduces pathogenic protein aggregation and increases
survival in transgenic mouse models of ALS and HD[365,378-380].
CoQ10 exhibits marked neuroprotective effects against aminoxya-
cetic acid and the mitochondrial toxins malonate and 3-NP and
reduces striatal lesions in rats[161]. CoQ10 in combination with
minocycline or remacemide (a NMDA antagonist) significantly
reduces behavioral deficits, reduces neuronal atrophy and
increases survival in transgenic HD mice [379,381,382]. The
combination of CoQl10 with creatine and also exerts additive
neuroprotective effects in the MPTP model of PD[365]. CoQ10 is
water insoluble, to increase its bioavilability, a water soluble
formulation of CoQ10 was prepared by combining CoQ10 with
polyoxyethanyl a-tocopheryl sebacate in 1: 2 molfmol (1: 3 w/w)
ratio, which can be diluted with aqueous solutions[383]. This
formulation of CoQ10 found protective against paraquat induced
degeneration of dopaminergic neurons and behavioral impair-
ments in rats[383]. Several studies suggest that water soluble
formulation of CoQ 10 increases mitochondrial activity in neuronal
cells[384,385].

Clinical trials with CoQ10 in HD

Multiple in vitro and in vivo animal studies found a potent
neturoprotective role of CoQ10 in neurodegenerative disorders.
Therefore, several clinical trials with CoQ10 have been initiated in
PD, HD and ALS[386]. Oral administration of CoQ10 (360mg/day)
resulted in significantly decreased levels of elevated cortical
lactate in HD patients, which were reversed by withdrawal of
CoQ10[167]. Animal studies showed additive significant neuropro-
tective effects of cthe ombination of CoQ10 with remacemide in
HD transgenic mice, therefore Huntington's Study Group carried
out a CARE-HD trial with CoQ10 and remacemide combination in
HD patients. CoQ10 and remacemide combination treatment
resulted in a 14% decrease in disease progression|387]. A phase
I11 trial of 2400 mg of CoQ10 daily has recently started in HD. A

phase I trial of CoQ10 in presymptomatic gene positive HD
patients (PREQUEL) has also recently been completed.

Clinical trials with CoQ10 in PD

Several early stage clinical trials have been carried out with
encouraging behavioral improvements in PD patients[386]. A open
label phase-I pilot trial was carried out to assess the safety and
tolerability of CoQ10 in 15 PD patients [388].. This study suggested
that CoQ10 at doses 400, 600 and 800mg/day for 1 month was safe
and well tolerated, and prroduced significant and dose-dependent
increases in plasma CoQ10 levels in PD patients. However, there
was no significant improvement in UPDRS scores. Interestingly
CoQ10 administration in this study showed a trend toward
an increase in complex-I activity in the PD subjects[388]. Next, a
multicenter, parallel-group, placebo-controlled, randomized,
dosage-ranging, double-blind and phase 11 {(QE2) clinical trial of
CoQ10 in early PD patients was carried out by the Parkinson's
Study Group [389]. In this study, CoQ10 was given at doses of 300,
600, or 1,200 mg/day for 16 months to PD patients. CoQ10 was safe
and well tolerated at dosages of up to 1200 mg/day and cauesd a
significant dose-dependent reduction in UPDRS score in PD sub-
jects [389]. A dose of CoQI10 360 mg/day for 4 weeks exerted
significant improvement in the UPDRS score with no improvement
of motor symptoms in PD patients in a monocenter, parallel group,
placebo controlled, double-blind trial[390]. Similarly, 1000mg/day
and 1500mg/day CoQ10 treatment for 3 months in an open label
clinical trial exerted significantly improved motor performance in
PD patients[391]. However, CoQ10 administration at 100 mg three
times/day for 3 months did not show any improvement in the
UPDRS score, behavioral symptoms and motor performance
[392,393].

We have carried out CoQ10 dose escalation (1200, 1800, 2400,
and 3000 mg/day with vitamin E (alpha-tocopherol) 1200 IU/day)
open label clinical trial in PD patients. CoQ10 dosages up to 3,600
mg/day were safe and well tolerated, and plasma CoQ10 levels
reached a plateau at the 2400 mg/day dosage, and did not increase
further at the 3000 mg/day dosage in PD patients [394]. A NINDS
sponsored double-blind, randomized, calibrated futility clinical
trial with 2400mg/day CoQ10 and GPI-1485 in early untreated
PD patients did not meet futility criteria[395]. However, phase III
QE3 trial of 600 early stage PD subjects treated with placebo,
1200mg or 2400mg of CoQ10 daily was recently halted when an
interim analysis showed futility in its outcome. These results
therefore do not support a neuroprotective effect of CoQ10 in PD.

Clinical trials with CoQI0 in ALS, AD and FriedreichE ataxia

An open label placebo controlled clinical trial found that
3000mg/day COQ10 dose safe and well tolerated in ALS patients
[396]. Recently a multicenter, two-stage, bias-adjusted, rando-
mized, placebo-controlled, double-blind, Phase II CoQ10 clinical
trial was conducted by QALS study group[397]. No significant
difference in ALS Functional Rating Scale-revised (ALSFRSr)
improvement was observed between CoQ10 and placebo [397]. A
double-blind, randomized, placebo-controlled, phase I trial of
CoQ10 (5 mg/kg/day) for six weeks in progressive supranuclear
palsy patients, showed an increased ratio of high-energy to low-
energy phosphates in the occipital lobe, and a significant improve-
ment in the PSP rating scale and frontal assessment battery[398].
Similarly, a double blind, randomized pilot study of CoQ10 and
vitamin E in Friedreich's ataxia patients found improvement in the
International Co-operative Ataxia Ratings Scale scores compared
to cross-sectional data[399].
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Idebenone

Idebenone, an analogue of CoQ10 act as a powerful anti-oxidant
and biochemically also known as ubiquinone. Idebenone chemi-
cally belongs to the quinone family of compounds has very similar
chemical structure to CoQ10. Idebenone showed neuroprotection
against Ap induced toxicity in cells and rodents[161]. Two multi-
centre, placebo controlled clinical trials of idebenone in patients
with AD, showed statistically significant improvement in the
Alzheimer's Disease Assessment Scale (ADAS) score [400,401].
Idebenone was safe and tolerable up to 360 mg/day and slowed
progression of cognitive deficits in small trials in patients with AD
[402403], however a larger multi-dose trial by the AD collabora-
tive group in 536 patients showed no benefit [404]. Idebenone
clinical trials in Friedrich’'s Ataxia are very promising and showed
clinical improvements [405,406].

MitoQ and Mitochondrial targeted peptides

MitoQ is a form of coenzymeQ ubiquinone linked to tripho-
sphonium ions through covalent attachment, which results in its
selective membrane potential driven accumulation within mitochon-
dria. It shows neuroprotective effects in several in vitro and in vivo
models of ischemia reperfusion injury, Ap induced toxicity and
neurodegeneration[407-409]. MitoQ protects Friedrich’s Ataxia fibro-
blasts from oxidative stress[410]. In a recent study MitoQ protected
against Ap induced impairments in hippocampal synaptic plasticity in
AD transgenic mice[411]. MitoQ reduces mitochondrial fission and
inhibits the translocation of the pro-apoptotic protein Bax to the
mitochondria in 6-OHDA induced cell model of PD [412]. However, a
double blind clinical trial with two doses of MitoQ for 12 months in
128 newly diagnosed untreated patients with PD did not show any
significant improvement in UPDRS scores and PD progression as
compared to the placebo control[413].

The novel antioxidant SS (Szeto-Schiller) peptides are cell-
permeable synthetic tetrapeptides that can selectively localize to
the inner mitochondrial membrane [414,415]. These peptides carry
3+ net charge at physiologic pH and decrease mitochondrial ROS
production, and inhibit mitochondrial swelling and cytochrome ¢
release in isolated mitochondria [415]. Addition of a tyrosine or
modified tyrosine residue increases their free radical scavenging
properties, and these analogs potently inhibit ROS-induced cell
death [416].

Peptide antioxidant (SS-31 and S5-20) targeted to the inner
mitochondrial membrane, reduce inhibition of the mitochondrial
electron transport chain, and inhibit apoptosis and oxidative
stress. These peptides also decrease mitachondrial ROS produc-
tion, inhibit the MPT and mitochondrial swelling, and reduce
cytochrome ¢ release. We found that §5-31 protects neuronal cells
from toxicity mediated by mutant Cu/Zn superoxide dismutase
(SOD1)[417]. We also showed that 5$5-31 and S$5-20 provide
neuroprotection and decrease oxidative stress in the MPTP
induced model of PD, and in G93A ALS transgenic mice[417 418].
The Mitochondrial antioxidant (TEMPOL) coupled to gramacidin
localizes into mitochondria (XJB-5-131), and causes enhanced
mitochondrial function, improved behavior and enhanced survival
and significant neuroprotective effects in a transgenic mouse
model of HD[419]. These findings strengthen the growing view
that mitochondria-targeted antioxidants/peptides have a potential
therapeutic role in neurodegenerative disorders.

Nrf2/ARE pathway/Triterpenoids

Mitochondrial dysfunction and ROS mediated damage to the
mitochondria plays a pivotal role in pathogenesis of major

neurodegenerative disorders, therefore therapies targeting the Nrf2/
antioxidant response element (ARE) pathway to combat mitochondrial
ROS are gaining much attention. Synthetic triterpenoids (TP) are
derivatives of oleanolic acid, and inhibit oxidative stress and cellular
inflammatory processes, by potently activating the antioxXidant
response element (ARE)-Nrf2-Keap1 signaling pathway. Activation of
Nrf2 by TP causes dissociation of Nrf2 from Keap1 and translocation to
the nucleus and binding to the ARE promoter sequences. This
promoter binding leads to coordinated induction of a battery of
cytoprotective genes, including antioxidant and anti-inflammatory
genes. Recently, synthetic triterpenoids such as CDDO were found to
potently induce the transcriptional activity of Nrf2, and markedly
enhance the expression of NQO-1, HO-1, glutathione transferases, and
other cytoprotective enzymes [420421]. These triterpenoids may act
as Nrf2 inducers by their involvement in Michael reaction to reactive
cysteine residues on the KEAP1 protein[422]. The synthetic triterpe-
noid, CDDO-methyl amide (2-cyano-N-methyl-3,12-dioxooleana-1,9
(11)-dien-28 amide; CDDO-MA), is at least 200,000 times more potent
as an inducer of NQO-1 or a suppressor of iINOS than its naturally
occurring oleanolic acid. We found that CDDO-MA is a very potent and
selective activator of the neuroprotective Nrf2 /ARE pathway [423,424].
Several studies implicate a neuroprotective role of synthetic TPs in
neurodegenerative disorders.

Neuron derived from the Nrf2 knockout mice are more suscep-
tible towards mitochondrial electron transport chain complex
inhibitors such as MPP+ and rotenone mediated oxidative stress
[425]. 3-NP causes increased motor deficits and striatal lesions in
the Nrf2 knockout mice, which were protected by adenoviral
mediated over expression of Nrf2[426]. We found that the syn-
thetic triterpenoid CDDO-MA potently activates Nrf2/antioxidant
response element (ARE) signaling and exerts significant neuropro-
tective effcets in the 3-NP rat model and the MPTP mouse model
[418.424]. The neuroprotective effects of synthetic TP against
MPTP induced neurodegeneration were dependent on Nrf2, since
treatment with TP in Nrf2 knockout mice did not provide protec-
tion against MPTP mediated neurotoxicity and induction of Nrf2-
dependent genes[424]. CDDO-MA in our studies activated Nrf2
dependent genes in wild type fibroblasts, but not in Nrf2 deficient
fibroblast [423]. CDDO-MA treatment resulted in significantly
reduced ROS generation, decreased MPTP induced neurodegenera-
tion and, dopamine depletion and reduced 3-NP induced striatal
lesions[418]. We found that TPs also improve the behavioral
phenotype and survival in transgenic mouse models of AD, HD
and ALS[427-429]. These studies suggest that targeting Nrf2/ARE
pathway through synthetic TPs could be a better therapeutic
approach in neurodegenerative disorders.

Lipoic acid, Carnitine, Nicotinamide, and =hydroxybutyrate

Lipoic acid found naturally in the mitochondria and has
antioxidant effects. We observed significant neuroprotective
effects of w-lipoic acid in transgenic mouse models of HD and
ALS[366,430,431]. The combination of a-lipoic acid and acetyl-L-
carnitine protects neuroblastoma cells against rotenone induced
toxicity by increasing mitochondrial biogenesis,and reducing ROS
through up-regulation of PGC-1«[432]. Carnitine and p-
hydroxybutyrate protect dopaminergic neurons against MPTP
induced toxicity[161]. Nicotinamide is a substrate for complex-I
of the electron transport chain. It prevents MPTP induced neuro-
degeneration in mice[375].

PGC-1C and PPARs

PGC-1a, a transcriptional co-activator is a new therapettic
target for neurodegenerative disorders[230]. PGC-1a regulates
several important biological functions including regulation of
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mitochondrial biogenesis, adaptive thermogenesis, antioxidant
defences and cellular respiration, by activating downstream
target genes including NRF-1, NRF-2, Tfam and antioxidant
enzyme genes[230]. Several studies have suggested impaired expres-
sionffunction of PGC-la and downstream target genes in the
neurodegenerative disorders including HD, PD, AD and ALS
[180,181,228,230,231,343433-435]. HD transgenic mice displayed
impaired thermoregulation during cold exposure, due to impaired
activation of PGC-1e and mitochondrial UCP-1 in brown adipose
tissue [231].

Crossbreeding of PGC-la knockout mice with HD knockin
transgenic mice resulted in an increased susceptibility of striatal
neurons towards 3-NP, enhanced neurodegeneration, and motor
symptom impairment in HD mice[228]. Lentivirus mediated over
expression of PGC-1a in the striatum prevented atrophy of striatal
neurons in the R6/2 HD transgenic mice [228]. Impairment of PGC-
la transcription is not restricted only to the brain in HD, but is also
observed in peripheral tissues. We found impaired PGC-1 tran-
scription in muscle and liver of HD transgenic mice[180]. We
injected p-guanidinopropionic acid (GPA) in HD transgenic mice to
create an artificial energy deprivation condition. GPA depletes PCr
and ATP levels and activates expression of AMPK and PGC-1a. We
found that GPA administration caused increased expression of
PCGC-1a and its downstream target genes in the muscle and brains
of wildtype mice, while in HD mice this response was blocked
[180]. This suggests that activation of PGC-1 and AMPK by an
energy stresser is significantly impaired in HD transgenic mice.
Further, adenoviral vector mediated over expression of PGC-1a in
the muscle reversed this blunted response[180].

PGC-1a knockout mice are more susceptible to MPTP induced
neurodegeneration, suggesting involvement of PGC-1a in PD
pathogenesis [240]. Genome wide expression studies in SN dopa-
minergic neurons of symptomatic PD patients, showed alterations
in PGC-1a target genes regulating cellular bioenergetics [436].
PGC-1a regulates the expression and activities of ROS scavenging
antioxidant enzymes and therefore combats aginst oxidative stress
[240]. PGC-1a over expression protects neural cells and mouse
model of PD, from oxidative stress induced by mitochondrial
toxins[240,437]. The parkin interacting substrate, PARIS (ZNF746)
represses the expression of the PGC-1a by binding to the PGC-1a
promoter leading to selective dopaminergic neurodegeneration in
the SNPc[438]. PARIS mediated dopaminergic neurodegeneration
was reversed by over expression of PGC-1« and parkin in the SNPc
[438]. Over expression of PGC-1a protected cells against mutant -
synuclein and rotenone mediated toxicity by increasing the
expression of mitochondrial respiratory chain subunits genes
[436]. PGC-1a expression was also found to be decreased in the
postmortem brain tissue of AD patients [434].

These studies suggest an involvement of PGC-1« in the patho-
genesis of neurodegenerative disorders, therefore pharmacologi-
cal/transcriptional activation of PCC-la may serve as a new
therapeutic strategy[2,230]. Several compounds which induce
PGC-1a and oxidative phosphorylation have already been identi-
fied [439]. PGC-1a reduces Ap production in a PPAR dependent
manner [435). Dietary supplementation with nicotinamide ribo-
side improves both cognitive function and synaptic plasticity by
enhancing PGC-1a mediated BACE1 degradation, and thus pre-
venting Ap production in AD mouse models[419]. Diammonium
glycyrrhizinate (DGC), the salt form of Glycyrrhizin, having anti-
inflammatory properties, was found to protect against Ap induced
neuronal death, mitochondrial dysfunction and improve cognitive
impairment by upregulating PGC-1a in Ap (1-42) induced AD mice
[440]. PGC-1u over expression in SOD1 transgenic (TgSOD1-G93A/
PGC-1a) mice leads to significantly improved motor function,
restoration of mitochondrial electron transport chain activities,
protection from motor neuron loss and enhanced survival of

SOD1-C93A mice [441]. However, over expression of PCC-1a solely
in muscles of SOD-1 ALS mice improves muscle function through-
out disease course, without extending the survival [442], PGC-1u
over expression in HD transgenic mice promoted htt turnover and
degradation by activating transcription factor EB (TFEB), a master
regulator of the autophagy-lysosome pathway, thus ameliorating
HD neurodegeneration [443]. Another potential approach to acti-
vate the PGC-la and downstream target genes, and to reduce
mitochondrial dysfunction is via activation of peroxisome
proliferator-activated receptors (PPARs). The PPARs are nuclear
receptors that act as ligand-modulated transcription factors and
regulate gene-expression programs of metabolic pathways such as
oxidative phosphorylation and mitochondrial biogenesis.

The PPARy agonist thiazolidinedione (TZD) treatment in R6/2
HD transgenic mice resulted in reduced Htt aggregates and
thereby decreased recruitment of PPARy into Htt aggregates
[444]. TZD also enhanced the expression PPARy and downstream
genes including PGC-1«, and several mitochondrial genes. Simi-
larly, another PPARy agonist rosiglitazone protected a neuroblas-
toma cell line (N2A) from mHtt mediated mitochondrial
dysfunction [444]. We found that administration of the pan-
PPAR agonist bezafibrate in the diet potently induced transcription
of PGC-1a and downstream genes, and increased survival in HD
transgenic mice [445]. Bezafibrate also reduced neuronal atrophy
and increased the numbers of mitochondria [445]. The PPARy
agonists rosiglitazone and pioglitazone provide neuroprotection in
models of PD, ALS, AD and HD [229,446-451]. Ganoderma lucidum
(GaLu) extract increases PGC-la expression and mitochondrial
biogenesis in the 3-NP induced cellular and animal models of
HD [452,453].

Altogether these studies suggest that PGC-1a expression can be
modulated by several pharmacological agents/genetic approaches
in neurodegenerative disorders. However, PGC-1a over expression
needs to be carefully regulated, as sustained overexpression of
PGC-1a in the substantia nigra of rats, causes impaired dopami-
nergic function and reduction in striatal DA content [454].

Transduceres of Creb-related binding protein (TORC)

Recently we have identified TORC as a novel therapeutic target
for HD. We found significantly decreased TORCI transcription/
function in HD striatal cells, transgenic mice, and in striatal tissue
from HD patients[455]. TORCs are co-activators of CREB, which
enhance CREB dependent gene transcription[455,456] and
strongly regulate PGC-la promoter activity, transcription and
mitochondrial biogenesis [457] TORC1 over expression resulted
in significantly increased CREB expression, PGC-1a promoter
activity, mRNA expression of mitochondrial biogenesis genes,
and mitochondrial DNA content in HD striatal cells. TORC1 over
expression increased the resistance of striatal cells to 3-NP
mediated toxicity by enhancing mitochondrial activity and MMP
in striatal neurons. TORC1 knock down resulted in decreased PGC-
la expression, and increased susceptibility to 3-NP induced
toxicity and enhanced neurodegeneration in HD transgenic mice.
Thease studies implicate TORC1 as a new therapeutic target in HD.

AMP Kinase

AMP-activated protein kinase (AMPK) is a Ser/Thr kinase that
serves as an energy sensor for whole body energy regulation
during energy deprivation conditions (reduced ATP) such as
starvation, ischemia and chronic metabolic stress. During low
energy states, AMPK gets activated which results in increased
glucose transport, fatty acid oxidation and mitochondrial biogen-
esis. AMPK activation also increases the phosphorylation of
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PGC-1w. 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR)
is an AMPK agonist, which activates PGC-1a through AMPK. AICAR
blocked LPS/Ap induced inflammatory processes by blocking the
expression of proinflammatory cytokines and by reducing num-
bers of astroglial cells [458]. Activation of AMPK by AICAR resulted
in significantly decreased Ap production in neuronal culture [459].
Activation of AMPK by metformin resulted in significantly pro-
longed survival and decreased hind limb clasping in male HD
transgenic mice. However, metformin showed no beneficial effects
on survival in LAS transgenic mice [460]. Recently, Viniferin (a
natural product) was found to activate AMPK and SIRT3 and
provide neuroprotection in cellular models of HD [461].

Sirtuins (Sir2) and resveratrol

Sirtuins are members of the NAD+ dependent histone deace-
tylase family mainly involved in regulation of several important
biological functions such as cellular metabolism, energy metabo-
lism, gluconeogenesis, cell survival and aging. Pharmacological
activation of sirtuins may serve as a potential neuroprotective
stretegy in several neurodegenerative disorders. The mammalian
Sirtuin gene family has seven homologues (SIRT1-7) and SIRT1 is a
potent inducer of PGC-1a. A recent study suggested that NAD-
dependent deacetylase SIRT1 over expression reduces the produc-
tion of Ap and plaques in a mouse model of AD, by activating
transcription of the gene encoding the alpha-secretase, ADAMI10
[462]. SIRT2 knockdown resulted in increased w-synuclein toxicity
and enhanced dopaminergic cell death in cellular and fly models
of PD|463]. Administration of resveratrol, a potent activator of
SIRT-1, resulted in increased survival of motor neurons in ALS
transgenic mice, and reduced learning and neurodegeneration in
AD mice[464]. Furthermore, lentiviral mediated over expression of
SIRT1 in the hippocampus, leads to significant neuroprotection in
AD transgenic mice [464]. Resveratrol was found to provide
neuroprotection against 3-NP induced motor and behavioral
deficits [465]. Resveratrol decreases PGCla acetylation, which
causes increased PGCla activity, increased mitochondrial biogen-
esis and improved motor function in mice [466]. SIRT1 is activated
by increased intracellular NAD+ concentration in the brain follow-
ing caloric restriction, which leads to decreased amyloid pathology
in an AD mouse model [467]. Over expression of SIRT1 deacety-
lase, and SIRT1 activation by resveratrol significantly protects
against microglia-dependent Ap toxicity [468]. We observed that
dietary supplementation with resveratrol resulted in reduced Ap
accumulation, motor improvement and reduced disease pathology
in transgenic mouse models of AD[469]. We also found decreased
peripheral pathology, decreased behavioral impairments and
reduced mitochondrial dysfunction in HD transgenic mice follow-
ing resveretrol supplementation[470]. These studies suggest that
targeting of Sirtuins may be an attractive therapeutic approach in
neurodegenerative disorders.

Conclusion and future perspectives

There is increasing evidence, which suggests a pivotal role of
mitochondrial dysfunction in the pathogenesis of major neurode-
generative disorders. The bioenergetic defects, mtDNA mutations/
polymorphism, altered mitochondrial dynamics, transcriptional
dysregulation, and altered Ca®* homeostasis are associated with
mitochondrial dysfunction in neurodegenerative diseases. Studies
in cybrids suggest direct involvement of mitochondria in the
progression of neurodegenerative disorders. In some neurodegen-
erative diseases such as Friedreich’s ataxia, there is direct involve-
ment of the product of the pathologic genetic defect with
mitochondria. In other neurodegenerative disorders such as PD

and AD involvement of mitochondria in disease pathogenesis is
more indirect. In AD, the pathogenic protein Ap may induce
mitochondrial dysfunction by directly binding to the mitochondria
and mitochondrial proteins such as ABAD and omi/HtrA2, leading
to reduced enzymatic activity of complexes Il and IV and mito-
chondrial respiration. In PD, a-synuclein and LRRK2 cause mito-
chondrial dysfunction by association with the mitochondria. D]-1
plays an important role in antioxidant defenses against oxidative
damage and thus protects against mitochondrial dysfunction.
PINK1 and Parkin regulate mitochondrial integrity, promote clear-
ance of dysfunctional mitochondria by mitophagy and regulate
axonal transport of mitochondria. PINK selectively accumulates on
diseased/damaged mitochondria and then recruits parkin, which
ubiquitinates mitochondria which then target them for mitophagy.
Parkin ubiquitinate mitofusins 1 and 2 for selective removal of
damaged mitochondria. Genetic mutations in PINK1, Parkin, DJ-1
and LRRK2 lead to impaired defense against oxidative stress,
reduced mitophagy, enhanced accumulation of damaged mito-
chondria and impaired mitochondrial dynamics in the brain. The
mutant SOD1 protein in ALS exerts its pathogenic properties by
direct interactions with mitochondria. Several studies found loca-
lization of mutant SOD1 in the mitochondrial intermembrane
space, outer mitochondrial membrane and matrix in spinal cord
motor neurons. Mutant SOD1 caused clustering of axonal mito-
chondria and impaired fast axonal mitochondrial transport in the
anterograde direction. Mutant Htt plays an important role in
mitochondrial dysfunction in HD by directly binding to the
mitochondria.

There is also evidence for abnormalities in mitochondrial
dynamics, which are involved in trafficking and turnover of
mitochondria, in neurodegenerative diseases. Mutant Htt impairs
in vitro and in vivo trafficking of mitochondria in neurons. Mutant
Htt binds to Drpl and increases its mitochondrial fission enzy-
matic activity, which leads to enhanced mitochondrial fragmenta-
tion. Ap impairs mitochondrial anterograde and retrograde axonal
transport in neurons. Ap caused decreased mitochondrial num-
bers, mitochondrial velocity, and mitochondrial length.

Lastly, there is increasing evidence that mitochondrial dysfunc-
tion may be a consequence of transcriptional alterations. In the
case of HD, mutant Htt impairs mitochondrial function by altering
transcription. Mutant Htt directly interacts and down regulates the
activity of several transcription factors including p53, CREB,
TAFII130 and SP1. Recently, an interaction of mutant Htt with
PGC-1a has been implicated in HD pathogenesis. PGC-1a is a
coactivator of several transcription factors, and a key regulator of
mitochondrial biogenesis, energy homeostasis, and adaptive ther-
mogenesis. Recently, PGC-1a expression and activity were also
found to be impaired in AD, PD, and ALS. In PD there is reduced
PGC-1a expression in dopaminergic neurons of sporadic cases, as
well as a decrease in association with Parkin mutations due to an
increase in PARIS, which inhibits PGC-1a expression.

Agents which enhance the mitochondrial bioenergetics can be
attractive potential therapeutics for amelioration of mitochondrial
dysfunction in neurodegenerative diseases. Therefore, a number of
mitochondrial-targeted therapeutics have been studied in several
animal models and clinical trials for the neurodegenerative dis-
eases. Creatine is a guanidino compound involved in energy
supply to the muscle and nerve cells. Creatine exerts neuropro-
tective effects in several neurodegenerative disorders including
PD, AD, HD, and ALS. It protects against degeneration of dopami-
nergic neurons in the substantia nigra and reduced dopamine
levels in a MPTP induced mouse model of PD. Creatine protects
motor neurons and enhances survival of G93A transgenic ALS
mice. Creatine supplementation was also neuroprotective in sev-
eral transgenic mouse models of HD. Several clinical trials with
creatine have been carried out by the NINDS NET-PD investigators
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in PD patients. Creatine was found safe and tolerable and caused
reduced UPDRS scores in PD patients. Similarly, creatine provided
promising effects in HD patients and is now in phase Il clinical
trials.

Coenzyme Q (CoQ) is a component of the electron transport
chain as well as an important antioxidant in mitochondrial and
lipid membranes. CoQ10 has been shown to be neuroprotective
against toxin and/or genetic models of PD, AD, HD and ALS. Several
phase Il clinical trials were commenced to study its efficacy in PD
and HD, although the PD trial was halted due tofutility. In animal
studies the combination of Creatine with CoQ10 provided additive
neuroprotective effects. Idebenone, a synthetic analogue of CoQ10
also found neuroprotective in AD small trials, although not in a
larger phase 3 trial. Idebenone and CoQ10 clinical trials showed
promising clinical improvements in Friedrich’s Ataxia.

Several mitochondria targeted antioxidants such as MitoQ have
been developed. MitoQ, a form of coenzymeQ ubiquinone linked
to triphosphonium ions through covalent attachment, which
results in its selective accumulation within mitochondria. MitoQ
and other novel peptide antioxidants (5531 and 5520) found
neuraprotective in cellular and animal models of neurodegenera-
tive diseases. Activation of Nrf2/ARE pathway by synthetic triter-
penoids, which regulate antioxidant enzymes and mitochondrial
biogenesis, showed neuroprotective effects in transgenic mouse
models of AD, HD and ALS. Dimethyl fumerate which activates the
Nrf2/ARE pathway was recently approved for the treatment of
multiple sclerosis [471]. Dimethyl fumerate improves cellular
redox status, glutathione, ATP levels, and mitochondrial mem-
brane potential [472]. Activation of PGC-1a, SIRT1, AMP kinase and
PPAR through genetic and pharmacological approaches were
found to exert neuroprotection and reduce mitochondrial dysfunc-
tion in a number of different transgenic mouse models of neuro-
degenerative diseases including HD. Recently TORC, which
enhances the transcription/function of PGC-1a, was implicated in
HD pathogenesis. There are a large number of compounds, which
are under development for the treatment of neurodegenerative
diseases, which target mitochondrial dysfunction and oxidative
damage, and which show great promise.
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